Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Visualizing Linear Models, Brinda W. D.


Варианты приобретения
Цена: 9083.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Brinda W. D.
Название:  Visualizing Linear Models
ISBN: 9783030641696
Издательство: Springer
Классификация:

ISBN-10: 3030641694
Обложка/Формат: Paperback
Страницы: 184
Вес: 0.27 кг.
Дата издания: 25.02.2022
Язык: English
Издание: 1st ed. 2021
Иллюстрации: 23 illustrations, color; 20 illustrations, black and white; xvi, 167 p. 43 illus., 23 illus. in color.
Размер: 23.39 x 15.60 x 0.99 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Designed to develop fluency with the underlying mathematics and to build a deep understanding of the principles, it`s an excellent basis for a one-semester course on statistical theory and linear modeling for intermediate undergraduates or graduate students. Three chapters gradually develop the essentials of linear model theory.


Applications of Linear and Nonlinear Models

Автор: Erik W. Grafarend , Silvelyn Zwanzig , Joseph L. Awange
Название: Applications of Linear and Nonlinear Models
ISBN: 3030945979 ISBN-13(EAN): 9783030945978
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides numerous examples of linear and nonlinear model applications. Here, we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view and a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss–Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters, we concentrate on underdetermined and overdetermined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE, and total least squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so-called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann–Plucker coordinates, criterion matrices of type Taylor–Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overjet. This second edition adds three new chapters: (1) Chapter on integer least squares that covers (i) model for positioning as a mixed integer linear model which includes integer parameters. (ii) The general integer least squares problem is formulated, and the optimality of the least squares solution is shown. (iii) The relation to the closest vector problem is considered, and the notion of reduced lattice basis is introduced. (iv) The famous LLL algorithm for generating a Lovasz reduced basis is explained. (2) Bayes methods that covers (i) general principle of Bayesian modeling. Explain the notion of prior distribution and posterior distribution. Choose the pragmatic approach for exploring the advantages of iterative Bayesian calculations and hierarchical modeling. (ii) Present the Bayes methods for linear models with normal distributed errors, including noninformative priors, conjugate priors, normal gamma distributions and (iii) short outview to modern application of Bayesian modeling. Useful in case of nonlinear models or linear models with no normal distribution: Monte Carlo (MC), Markov chain Monte Carlo (MCMC), approximative Bayesian computation (ABC) methods. (3) Error-in-variables models, which cover: (i) Introduce the error-in-variables (EIV) model, discuss the difference to least squares estimators (LSE), (ii) calculate the total least squares (TLS) estimator. Summarize the properties of TLS, (iii) explain the idea of simulation extrapolation (SIMEX) estimators, (iv) introduce the symmetrized SIMEX (SYMEX) estimator and its relation to TLS, and (v) short outview to nonlinear EIV models. The chapter on algebraic solution of nonlinear system of equations has also been updated in line with the new emerging field of hybrid numeric-symbolic solutions to systems of nonlinear equations, ermined system of nonlinear equations on curved manifolds. The von Mises–Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter is devoted to probabilistic regression, the special Gauss–Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra, and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger algorithm, especially the C. F. Gauss combinatorial algorithm.

Visualizing Time: Designing Graphical Representations for Statistical Data

Автор: Wills Graham
Название: Visualizing Time: Designing Graphical Representations for Statistical Data
ISBN: 1493939246 ISBN-13(EAN): 9781493939244
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: He does not simply give rules and advice, but bases these on general principles and provide a clear path between them This book is concerned with the graphical representation of time data and is written to cover a range of different users.

Graphics of Large Datasets

Автор: Antony Unwin; Martin Theus; Heike Hofmann
Название: Graphics of Large Datasets
ISBN: 149393869X ISBN-13(EAN): 9781493938698
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows how to look at ways of visualizing large datasets, whether large in numbers of cases, or large in numbers of variables, or large in both. All ideas are illustrated with displays from analyses of real datasets.

Geographic data science with R :

Автор: Wimberly, Michael C.,
Название: Geographic data science with R :
ISBN: 1032347716 ISBN-13(EAN): 9781032347714
Издательство: Taylor&Francis
Рейтинг:
Цена: 12554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: There is a lack of books on the broader topic of scientific workflows for geospatial data processing and analysis. This book aims to fill this gap by providing a series of tutorials aimed at teaching good practices for using geospatial data to address problems in environmental geography.

Multivariate Statistical Modelling Based on Generalized Linear Models

Автор: W. Hennevogl; Ludwig Fahrmeir; Gerhard Tutz
Название: Multivariate Statistical Modelling Based on Generalized Linear Models
ISBN: 1441929002 ISBN-13(EAN): 9781441929006
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book is aimed at applied statisticians, graduate students of statistics, and students and researchers with a strong interest in statistics and data analysis. This second edition is extensively revised, especially those sections relating with Bayesian concepts.

Linear and Generalized Linear Mixed Models and Their Applications

Автор: Jiang Jiming, Nguyen Thuan
Название: Linear and Generalized Linear Mixed Models and Their Applications
ISBN: 1071612840 ISBN-13(EAN): 9781071612842
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models.

Linear Models and Regression with R: An Integrated Approach

Автор: Sengupta Debasis, Jammalamadaka S. Rao
Название: Linear Models and Regression with R: An Integrated Approach
ISBN: 9811229287 ISBN-13(EAN): 9789811229282
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14852.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Starting with the basic linear model where the design and covariance matrices are of full rank, this book demonstrates how the same statistical ideas can be used to explore the more general linear model with rank-deficient design and/or covariance matrices.

Visualizing linear models

Автор: Brinda, W. D.
Название: Visualizing linear models
ISBN: 303064166X ISBN-13(EAN): 9783030641665
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designed to develop fluency with the underlying mathematics and to build a deep understanding of the principles, it`s an excellent basis for a one-semester course on statistical theory and linear modeling for intermediate undergraduates or graduate students. Three chapters gradually develop the essentials of linear model theory.

Visualizing Statistical Models And Concepts

Автор: Farebrother, R.W. , Schyns, Michael
Название: Visualizing Statistical Models And Concepts
ISBN: 0367447053 ISBN-13(EAN): 9780367447052
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, the author finds that many of the important concepts of mathematical statistics can be associated with physical models; and that the optimality criteria of statistical estimation procedures can often be interpreted in terms of the concept of potential energy.

Predictive Models

Автор: Biecek, Przemyslaw , Burzykowski, Tomasz
Название: Predictive Models
ISBN: 0367135590 ISBN-13(EAN): 9780367135591
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is about a new field in statistical machine learning - about interpretation and explanation of predictive models. Machine learning models are widely used in predictive modelling, both for regression and classification.

Linear models with python

Автор: Faraway, Julian J.
Название: Linear models with python
ISBN: 1138483958 ISBN-13(EAN): 9781138483958
Издательство: Taylor&Francis
Рейтинг:
Цена: 13779.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear Models with Python offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using Python

Recent advances in linear models and related areas

Название: Recent advances in linear models and related areas
ISBN: 3790825611 ISBN-13(EAN): 9783790825619
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This collection contains invited papers by distinguished statisticians to honour and acknowledge the contributions of Professor Dr. Dr. Helge Toutenburg to Statistics on the occasion of his sixty-?fth birthday.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия