Regression: Models, Methods and Applications, Fahrmeir Ludwig, Kneib Thomas, Lang Stefan
Старое издание
Автор: Ludwig Fahrmeir; Thomas Kneib; Stefan Lang; Brian Название: Regression Models, Methods and Applications ISBN: 3662638827 ISBN-13(EAN): 9783662638828 Издательство: Springer Цена: 20962.00 р. Наличие на складе: Невозможна поставка.
Автор: Fox John Название: Applied Regression Analysis and Generalized Linear Models ISBN: 1452205663 ISBN-13(EAN): 9781452205663 Издательство: Sage Publications Рейтинг: Цена: 25027.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Providing a modern treatment of regression analysis, linear models and closely related methods, this book introduces students to one of the most useful and widely used statistical tools for social research.
Автор: Hocking Ronald R Название: Methods and Applications of Linear Models ISBN: 1118329503 ISBN-13(EAN): 9781118329504 Издательство: Wiley Рейтинг: Цена: 20109.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Praise for the Second Edition "An essential desktop reference book... it should definitely be on your bookshelf.
Автор: Vittinghoff Название: Regression Methods in Biostatistics ISBN: 0387202757 ISBN-13(EAN): 9780387202754 Издательство: Springer Рейтинг: Цена: 11313.00 р. Наличие на складе: Поставка под заказ.
Описание: An introduction to the multipredictor regression methods widely used in biostatistics. This book covers linear models for continuous outcomes; logistic models for binary outcomes; the Cox model for right-censored survival times; repeated-measures models for longitudinal and hierarchical outcomes; and linear models for counts and other outcomes.
Автор: David G. T. Denison Название: Bayesian Methods for Nonlinear Classification and Regression ISBN: 0471490369 ISBN-13(EAN): 9780471490364 Издательство: Wiley Рейтинг: Цена: 20584.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Regression analysis models the relationship between a set of responses and another variable: for example, to estimate the true position of a line through a number of observed points. Unfortunately, data rarely conforms to simple curves and straight lines - parametric models - and this text examines more complex - or nonparametric - models.
Автор: Miller Название: Subset Selection in Regression ISBN: 1584881712 ISBN-13(EAN): 9781584881711 Издательство: Taylor&Francis Рейтинг: Цена: 27562.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deals with the techniques for fitting and choosing models that are linear in their parameters and to understanding and correcting the bias introduced by selecting a model. This title includes a chapter on Bayesian methods and an example from the field of near infrared spectroscopy. It emphasises on cross-validation and focuses on bootstrapping.
Автор: Jon Wakefield Название: Bayesian and Frequentist Regression Methods ISBN: 1493938622 ISBN-13(EAN): 9781493938629 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a balanced, modern introduction to Bayesian and frequentist methods for regression analysis. The author discusses Frequentist and Bayesian Inferences; Linear Models; Binary Data Models; General Regression Models and Survival Models.
Автор: Fahrmeir Ludwig Название: Regression ISBN: 3642343325 ISBN-13(EAN): 9783642343322 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Thus, the book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis.
Автор: Eric Vittinghoff; David V. Glidden; Stephen C. Shi Название: Regression Methods in Biostatistics ISBN: 1489998543 ISBN-13(EAN): 9781489998545 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This fresh edition, substantially revised and augmented, provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics. The examples used, analyzed using Stata, can be applied to other areas.
Автор: Hilbe Название: Logistic Regression Models ISBN: 1138106712 ISBN-13(EAN): 9781138106710 Издательство: Taylor&Francis Рейтинг: Цена: 8726.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Logistic Regression Models presents an overview of the full range of logistic models, including binary, proportional, ordered, partially ordered, and unordered categorical response regression procedures. Other topics discussed include panel, survey, skewed, penalized, and exact logistic models. The text illustrates how to apply the various models to health, environmental, physical, and social science data.
Examples illustrate successful modeling The text first provides basic terminology and concepts, before explaining the foremost methods of estimation (maximum likelihood and IRLS) appropriate for logistic models. It then presents an in-depth discussion of related terminology and examines logistic regression model development and interpretation of the results. After focusing on the construction and interpretation of various interactions, the author evaluates assumptions and goodness-of-fit tests that can be used for model assessment. He also covers binomial logistic regression, varieties of overdispersion, and a number of extensions to the basic binary and binomial logistic model. Both real and simulated data are used to explain and test the concepts involved. The appendices give an overview of marginal effects and discrete change as well as a 30-page tutorial on using Stata commands related to the examples used in the text. Stata is used for most examples while R is provided at the end of the chapters to replicate examples in the text.
Apply the models to your own data Data files for examples and questions used in the text as well as code for user-authored commands are provided on the book's website, formatted in Stata, R, Excel, SAS, SPSS, and Limdep.
See Professor Hilbe discuss the book.
Автор: Bolfarine Heleno, de Castro Mбrio, Galea Manuel Название: Regression Models for the Comparison of Measurement Methods ISBN: 3030579344 ISBN-13(EAN): 9783030579340 Издательство: Springer Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides an updated account of the regression techniques employed in comparing analytical methods and to test the biases of one method relative to others - a problem commonly found in fields like analytical chemistry, biology, engineering, and medicine.
Автор: Schroeder Larry D., Sjoquist David L., Stephan Pau Название: Understanding Regression Analysis: An Introductory Guide ISBN: 1506332889 ISBN-13(EAN): 9781506332888 Издательство: Sage Publications Рейтинг: Цена: 5859.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Presents the fundamentals of regression analysis, from its meaning to uses, in a concise, easy-to-read, and non-technical style.
Автор: John Fox Название: Regression Diagnostics: An Introduction ISBN: 1544375220 ISBN-13(EAN): 9781544375229 Издательство: Sage Publications Рейтинг: Цена: 5859.00 р. Наличие на складе: Поставка под заказ.
Описание:
Regression diagnostics are methods for determining whether a regression model that has been fit to data adequately represents the structure of the data. For example, if the model assumes a linear (straight-line) relationship between the response and an explanatory variable, is the assumption of linearity warranted? Regression diagnostics not only reveal deficiencies in a regression model that has been fit to data but in many instances may suggest how the model can be improved. The Second Edition of this bestselling volume by John Fox considers two important classes of regression models: the normal linear regression model (LM), in which the response variable is quantitative and assumed to have a normal distribution conditional on the values of the explanatory variables; and generalized linear models (GLMs) in which the conditional distribution of the response variable is a member of an exponential family. R code and data sets for examples within the text can be found on an accompanying website at https://tinyurl.com/RegDiag.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru