Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Regression: Models, Methods and Applications, Fahrmeir Ludwig, Kneib Thomas, Lang Stefan


Варианты приобретения
Цена: 15372.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Fahrmeir Ludwig, Kneib Thomas, Lang Stefan   (Людвиг Фармейр, Томас Кнайб, С)
Название:  Regression: Models, Methods and Applications
Перевод названия: Людвиг Фармейр, Томас Кнайб, Стефан Ланг: Регрессия. Модели, методы и применение
ISBN: 9783662638811
Издательство: Springer
Классификация:
ISBN-10: 3662638819
Обложка/Формат: Hardcover
Страницы: 690
Вес: 1.24 кг.
Дата издания: 30.10.2021
Язык: English
Издание: 2nd ed. 2021
Иллюстрации: 4 illustrations, color; 285 illustrations, black and white; xx, 744 p. 289 illus., 4 illus. in color.
Размер: 23.39 x 15.60 x 4.14 cm
Читательская аудитория: Professional & vocational
Подзаголовок: Models, methods and applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Now in its second edition, this textbook provides an applied and unified introduction to parametric, nonparametric and semiparametric regression that closes the gap between theory and application. The most important models and methods in regression are presented on a solid formal basis, and their appropriate application is shown through numerous examples and case studies. The most important definitions and statements are concisely summarized in boxes, and the underlying data sets and code are available online on the book’s dedicated website. Availability of (user-friendly) software has been a major criterion for the methods selected and presented. The chapters address the classical linear model and its extensions, generalized linear models, categorical regression models, mixed models, nonparametric regression, structured additive regression, quantile regression and distributional regression models. Two appendices describe the required matrix algebra, as well as elements of probability calculus and statistical inference. In this substantially revised and updated new edition the overview on regression models has been extended, and now includes the relation between regression models and machine learning, additional details on statistical inference in structured additive regression models have been added and a completely reworked chapter augments the presentation of quantile regression with a comprehensive introduction to distributional regression models. Regularization approaches are now more extensively discussed in most chapters of the book. The book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis. It is written at an intermediate mathematical level and assumes only knowledge of basic probability, calculus, matrix algebra and statistics.
Дополнительное описание: Introduction.- Regression Models.- The Classical Linear Model.- Extensions of the Classical Linear Model.- Generalized Linear Models.- Categorical Regression Models.- Mixed Models.- Nonparametric Regression.- Structured Additive Regression.- Distributiona



      Старое издание
Regression Models, Methods and Applications

Автор: Ludwig Fahrmeir; Thomas Kneib; Stefan Lang; Brian
Название: Regression Models, Methods and Applications
ISBN: 3662638827 ISBN-13(EAN): 9783662638828
Издательство: Springer
Цена: 20962.00 р.
Наличие на складе: Невозможна поставка.


Applied Regression Analysis and Generalized Linear Models

Автор: Fox John
Название: Applied Regression Analysis and Generalized Linear Models
ISBN: 1452205663 ISBN-13(EAN): 9781452205663
Издательство: Sage Publications
Рейтинг:
Цена: 25027.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Providing a modern treatment of regression analysis, linear models and closely related methods, this book introduces students to one of the most useful and widely used statistical tools for social research.

Methods and Applications of Linear Models

Автор: Hocking Ronald R
Название: Methods and Applications of Linear Models
ISBN: 1118329503 ISBN-13(EAN): 9781118329504
Издательство: Wiley
Рейтинг:
Цена: 20109.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Praise for the Second Edition "An essential desktop reference book... it should definitely be on your bookshelf.

Regression Methods in Biostatistics

Автор: Vittinghoff
Название: Regression Methods in Biostatistics
ISBN: 0387202757 ISBN-13(EAN): 9780387202754
Издательство: Springer
Рейтинг:
Цена: 11313.00 р.
Наличие на складе: Поставка под заказ.

Описание: An introduction to the multipredictor regression methods widely used in biostatistics. This book covers linear models for continuous outcomes; logistic models for binary outcomes; the Cox model for right-censored survival times; repeated-measures models for longitudinal and hierarchical outcomes; and linear models for counts and other outcomes.

Bayesian Methods for Nonlinear Classification and Regression

Автор: David G. T. Denison
Название: Bayesian Methods for Nonlinear Classification and Regression
ISBN: 0471490369 ISBN-13(EAN): 9780471490364
Издательство: Wiley
Рейтинг:
Цена: 20584.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Regression analysis models the relationship between a set of responses and another variable: for example, to estimate the true position of a line through a number of observed points. Unfortunately, data rarely conforms to simple curves and straight lines - parametric models - and this text examines more complex - or nonparametric - models.

Subset Selection in Regression

Автор: Miller
Название: Subset Selection in Regression
ISBN: 1584881712 ISBN-13(EAN): 9781584881711
Издательство: Taylor&Francis
Рейтинг:
Цена: 27562.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Deals with the techniques for fitting and choosing models that are linear in their parameters and to understanding and correcting the bias introduced by selecting a model. This title includes a chapter on Bayesian methods and an example from the field of near infrared spectroscopy. It emphasises on cross-validation and focuses on bootstrapping.

Bayesian and Frequentist Regression Methods

Автор: Jon Wakefield
Название: Bayesian and Frequentist Regression Methods
ISBN: 1493938622 ISBN-13(EAN): 9781493938629
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a balanced, modern introduction to Bayesian and frequentist methods for regression analysis. The author discusses Frequentist and Bayesian Inferences; Linear Models; Binary Data Models; General Regression Models and Survival Models.

Regression

Автор: Fahrmeir Ludwig
Название: Regression
ISBN: 3642343325 ISBN-13(EAN): 9783642343322
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Thus, the book primarily targets an audience that includes students, teachers and practitioners in social, economic, and life sciences, as well as students and teachers in statistics programs, and mathematicians and computer scientists with interests in statistical modeling and data analysis.

Regression Methods in Biostatistics

Автор: Eric Vittinghoff; David V. Glidden; Stephen C. Shi
Название: Regression Methods in Biostatistics
ISBN: 1489998543 ISBN-13(EAN): 9781489998545
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This fresh edition, substantially revised and augmented, provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics. The examples used, analyzed using Stata, can be applied to other areas.

Logistic Regression Models

Автор: Hilbe
Название: Logistic Regression Models
ISBN: 1138106712 ISBN-13(EAN): 9781138106710
Издательство: Taylor&Francis
Рейтинг:
Цена: 8726.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Logistic Regression Models presents an overview of the full range of logistic models, including binary, proportional, ordered, partially ordered, and unordered categorical response regression procedures. Other topics discussed include panel, survey, skewed, penalized, and exact logistic models. The text illustrates how to apply the various models to health, environmental, physical, and social science data.

Examples illustrate successful modeling
The text first provides basic terminology and concepts, before explaining the foremost methods of estimation (maximum likelihood and IRLS) appropriate for logistic models. It then presents an in-depth discussion of related terminology and examines logistic regression model development and interpretation of the results. After focusing on the construction and interpretation of various interactions, the author evaluates assumptions and goodness-of-fit tests that can be used for model assessment. He also covers binomial logistic regression, varieties of overdispersion, and a number of extensions to the basic binary and binomial logistic model. Both real and simulated data are used to explain and test the concepts involved. The appendices give an overview of marginal effects and discrete change as well as a 30-page tutorial on using Stata commands related to the examples used in the text. Stata is used for most examples while R is provided at the end of the chapters to replicate examples in the text.

Apply the models to your own data
Data files for examples and questions used in the text as well as code for user-authored commands are provided on the book's website, formatted in Stata, R, Excel, SAS, SPSS, and Limdep.

See Professor Hilbe discuss the book.

Regression Models for the Comparison of Measurement Methods

Автор: Bolfarine Heleno, de Castro Mбrio, Galea Manuel
Название: Regression Models for the Comparison of Measurement Methods
ISBN: 3030579344 ISBN-13(EAN): 9783030579340
Издательство: Springer
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides an updated account of the regression techniques employed in comparing analytical methods and to test the biases of one method relative to others - a problem commonly found in fields like analytical chemistry, biology, engineering, and medicine.

Understanding Regression Analysis: An Introductory Guide

Автор: Schroeder Larry D., Sjoquist David L., Stephan Pau
Название: Understanding Regression Analysis: An Introductory Guide
ISBN: 1506332889 ISBN-13(EAN): 9781506332888
Издательство: Sage Publications
Рейтинг:
Цена: 5859.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents the fundamentals of regression analysis, from its meaning to uses, in a concise, easy-to-read, and non-technical style.

Regression Diagnostics: An Introduction

Автор: John Fox
Название: Regression Diagnostics: An Introduction
ISBN: 1544375220 ISBN-13(EAN): 9781544375229
Издательство: Sage Publications
Рейтинг:
Цена: 5859.00 р.
Наличие на складе: Поставка под заказ.

Описание:

Regression diagnostics are methods for determining whether a regression model that has been fit to data adequately represents the structure of the data. For example, if the model assumes a linear (straight-line) relationship between the response and an explanatory variable, is the assumption of linearity warranted? Regression diagnostics not only reveal deficiencies in a regression model that has been fit to data but in many instances may suggest how the model can be improved. The Second Edition of this bestselling volume by John Fox considers two important classes of regression models: the normal linear regression model (LM), in which the response variable is quantitative and assumed to have a normal distribution conditional on the values of the explanatory variables; and generalized linear models (GLMs) in which the conditional distribution of the response variable is a member of an exponential family. R code and data sets for examples within the text can be found on an accompanying website at https://tinyurl.com/RegDiag


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия