Описание: Machine learning is a vital part of numerous academic and financial applications, in areas ranging from health care and treatment to finding relevant information in social networks. Large organisations thoughtfully apply machine learning algorithms with extensive research teams. The purpose of this book is to provide an intellectual introduction to statistical or machine learning (ML) techniques for those that would not normally be exposed to such approaches during their typical required statistical exercise.
Statistical analysis is an integral part of machine learning and can be described as a form of it, often even utilising well-known and familiar techniques, that has a different focus than traditional analytical practice in applied disciplines. The key notion is that flexible, automatic approaches are used to detect patterns within the data, with a primary focus on making predictions on future data.
Описание: This book focuses on the use of The Internet of Things (IoT) and big data in business intelligence, data management, Hadoop, machine learning, cloud, smart cities, etc. IoT and big data emerged from the early 2000s data boom, driven forward by many of the early internet and technology companies. The Internet of Things (IoT) is an interconnection of several devices, networks, technologies, and human resources to achieve a common goal. There are a variety of IoT-based applications being used in different sectors and have succeeded in providing huge benefits to the users. The generation of big data by IoT has ruptured the existing data processing capacity of IoT and recommends to adopt the data analytics to strengthen solutions. The success of IoT depends upon the influential association of big data analytics. New technologies like search engines, mobile devices, and industrial machines provided as much data as companies could handle—and the scale continues to grow. In a study conducted by IDC, the market intelligence firm estimated that the global production of data would grow 10x between 2015 and 2020. So, the proposed book covers up all the aspects in the field discuss above.
Описание: Provides a comprehensive understanding of the business systems, platforms, procedures, and mechanisms that underpin different stakeholders` experiences with reality-enhancing technologies and their transformative application in management.
Описание: Provides a comprehensive understanding of the business systems, platforms, procedures, and mechanisms that underpin different stakeholders` experiences with reality-enhancing technologies and their transformative application in management.
Описание: This book constitutes the thoroughly refereed post-workshop proceedings at PAKDD Workshops 2016, held in conjunction with PAKDD, the 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Auckland, New Zealand, in April 2016. The 23 revised papers presented were carefully reviewed and selected from 38 submissions.
Автор: U Kang; Ee-Peng Lim; Jeffrey Xu Yu; Yang-Sae Moon Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3319672738 ISBN-13(EAN): 9783319672731 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The workshops affiliated with PAKDD 2017 include: Workshop on Machine Learning for Sensory Data Analysis (MLSDA), Workshop on Biologically Inspired Data Mining Techniques (BDM), Pacific Asia Workshop on Intelligence and Security Informatics (PAISI), and Workshop on Data Mining in Business Process Management (DM-BPM).
Автор: Wen-Chih Peng; Haixun Wang; James Bailey; Vincent Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3319131850 ISBN-13(EAN): 9783319131856 Издательство: Springer Рейтинг: Цена: 13416.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings at PAKDD Workshops 2014, held in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) held in Tainan, Taiwan, in May 2014. The 73 revised papers presented were carefully reviewed and selected from 179 submissions.
Автор: Xiao-Li Li; Tru Cao; Ee-Peng Lim; Zhi-Hua Zhou; Tu Название: Trends and Applications in Knowledge Discovery and Data Mining ISBN: 3319256599 ISBN-13(EAN): 9783319256597 Издательство: Springer Рейтинг: Цена: 6708.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book constitutes the refereed proceedings at PAKDD Workshops 2015, held in conjunction with PAKDD, the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining in Ho Chi Minh City, Vietnam, in May 2015.
Автор: Rik Das, Siddhartha Bhattacharyya, Sudarshan Nandy Название: Machine Learning Applications: Emerging Trends ISBN: 3110608537 ISBN-13(EAN): 9783110608533 Издательство: Walter de Gruyter Цена: 18586.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The publication is attempted to address emerging trends in machine learning applications. Recent trends in information identification have identified huge scope in applying machine learning techniques for gaining meaningful insights. Random growth of unstructured data poses new research challenges to handle this huge source of information. Efficient designing of machine learning techniques is the need of the hour. Recent literature in machine learning has emphasized on single technique of information identification. Huge scope exists in developing hybrid machine learning models with reduced computational complexity for enhanced accuracy of information identification. This book will focus on techniques to reduce feature dimension for designing light weight techniques for real time identification and decision fusion. Key Findings of the book will be the use of machine learning in daily lives and the applications of it to improve livelihood. However, it will not be able to cover the entire domain in machine learning in its limited scope. This book is going to benefit the research scholars, entrepreneurs and interdisciplinary approaches to find new ways of applications in machine learning and thus will have novel research contributions. The lightweight techniques can be well used in real time which will add value to practice.
Автор: Rautaray Siddharth Swarup, Pemmaraju Phani, Mohanty Hrushikesha Название: Trends of Data Science and Applications: Theory and Practices ISBN: 9813368144 ISBN-13(EAN): 9789813368149 Издательство: Springer Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc.
Описание: This book constitutes the thoroughly refereed proceedings of the 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, held in Kitakyushu, Japan, in September 2020. The 62 full papers and 17 short papers presented were carefully reviewed and selected from 119 submissions. The IEA/AIE 2020 conference will continue the tradition of emphasizing on applications of applied intelligent systems to solve real-life problems in all areas.
These areas include are language processing; robotics and drones; knowledge based systems; innovative applications of intelligent systems; industrial applications; networking applications; social network analysis; financial applications and blockchain; medical and health-related applications; anomaly detection and automated diagnosis; decision-support and agent-based systems; multimedia applications; machine learning; data management and data clustering; pattern mining; system control, classification, and fault diagnosis.
Автор: Abu-Salih Bilal, Wongthongtham Pornpit, Zhu Dengya Название: Social Big Data Analytics: Practices, Techniques, and Applications ISBN: 9813366516 ISBN-13(EAN): 9789813366510 Издательство: Springer Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Chapter 1: Big data technologies
Big data is no more "all just hype" but widely applied in nearly all aspects of our business, governments, and organizations with the technology stack of AI. Its influences are far beyond a simple technique innovation but involves all rears in the world. This chapter will first have historical review of big data; followed by discussion of characteristics of big data, i.e. the 3V's to up 10V's of big data. The chapter then introduces technology stacks for an organization to build a big data application, from infrastructure/platform/ecosystem to constructional units/components; following by several successful examples. Finally, we provide some big data online resources for reference.
Chapter 2: Credibility and influence in social big data
Online Social Networks (OSNs) are a fertile medium through which users can express their sentiments and share their opinions, experiences and knowledge of several topics. There is a deficiency of assessment mechanisms that incorporate domain-based trustworthiness. In OSNs, determining users' influence in a particular domain has been driven by its significance in a broad range of applications such as personalized recommendation systems, opinion analysis, expertise retrieval, to name a few. This chapter presents a comprehensive framework that aims to infer value from BSD by measuring the domain-based trustworthiness of OSN users, addressing the main features of big data, and incorporating semantic analysis and the temporal factor.
Chapter 3: Semantic data discovery from social big data
The challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academia and industry. Social big data is an important big data island; thus, social data analytics are intended to make sense of data and to obtain value from data. Social big data provides a wealth of information that businesses, political governments, organisations, etc. can mine and analyse to exploit value in a variety of areas. This chapter discusses the development of an approach that aims to semantically analyse social content, thus enriching social data with semantic conceptual representation for domain-based discovery.
Chapter 4: Predictive analytics using social big data and machine learning
Previous works in the area of topic distillation and discovery lack an appropriate and applicable technical solution that can handle the complex task of obtaining an accurate interpretation of the contextual social content. This is evident through the inadequacy of these endeavours in addressing the topics of microblogging short messages like tweets, and their inability to classify and predict the messages' actual and precise domains of interest at the user level. Hence, this chapter intends to address this problem by presenting solutions to domain-based classification and prediction of social big data at the user and tweet levels incorporating comprehensive knowledge discovery tools and well-known machine learning algorithms.
Chapter 5: Affective design in the era of big social data
In today's competitive market, product designers not only need to optimize functional qualities when developing a new product, but also they need to optimize the affective qualities of the product. The reason is that products with high affective qualities is more likely to attract more potential consumers to buy. In the past, affective design is generally conducted based on the limited amount of customer survey data which is collected from marketing questionnaires and consumer interviews. Since the data amount is limited, the affective design cannot fully reflect the current or even the recent situation of the marketplaces. Thanks to the advanced computing and web technologies, big data from social media or product reviews in w
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru