Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis: With Applications to Derivation of Causal Fluid Dynamics, Kunihiro Teiji, Kikuchi Yuta, Tsumura Kyosuke


Варианты приобретения
Цена: 20962.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kunihiro Teiji, Kikuchi Yuta, Tsumura Kyosuke
Название:  Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis: With Applications to Derivation of Causal Fluid Dynamics
ISBN: 9789811681882
Издательство: Springer
Классификация:

ISBN-10: 9811681880
Обложка/Формат: Hardcover
Страницы: 506
Вес: 0.88 кг.
Дата издания: 02.04.2022
Серия: Fundamental theories of physics
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 9 illustrations, color; 12 illustrations, black and white; xvii, 486 p. 21 illus., 9 illus. in color.
Размер: 23.39 x 15.60 x 2.87 cm
Читательская аудитория: Professional & vocational
Подзаголовок: With applications to derivation of causal fluid dynamics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

PART I Introduction to Renormalization Group (RG) Method

1 Introduction: Notion of Effective Theories in Physical Sciences

2 Divergence and Secular Term in the Perturbation Series of Ordinary Differential Equations

3 Traditional Resummation Methods

3.1 Reductive Perturbation Theory

3.2 Lindstedts Method

3.3 Krylov-Bogoliubov-Mitropolskys Method for Nonlinear Oscillators

4 Elementary Introduction of the RG method in Terms of the Notion of Envelopes

4.1 Notion of Envelopes of Family of Curves Adapted for a Geometrical Formulation of the RG Method

4.2 Elementary Examples: Damped Oscillator and Boundary-Layer Problem

5 General Formulation and Foundation of the RG Method: Ei-Fujii-Kunihiro

Formulation and Relation to Kuramotos reduction scheme

6 Relation to the RG Theory in Quantum Field Theory

7 Resummation of the Perturbation Series in Quantum Methods

PART II Extraction of Slow Dynamics Described by Differential and Difference Equations

8 Illustrative Examples

8.1 Rayleigh/Van der Pol equation and jumping phenomena

8.2 Lotka-Volterra Equation

8.3 Lorents Model

9 Slow Dynamics Around Critical Point in Bifurcation Phenomena

10 Dynamical Reduction of A Generic Non-linear Evolution Equation with Semi-simple Linear Operator

11 A Generic Case when the Linear Operator Has a Jordan-cell Structure

12 Dynamical Reduction of Difference Equations (Maps)

13 Slow Dynamics in Some Partial Differential Equations

13.1 Dissipative One-Dimensional Hyperbolic Equation

13.2 Swift-Hohenberg Equation

13.3 Damped Kuramoto-Shivashinsky Equation

13.4 Diffusion in Porus Medium --- Barrenblatt Equation

14 Appendix: Some Mathematical Formulae

PART III Application to Extracting Slow Dynamics of Non-equilibrium Phenomena

15 Dynamical Reduction of Kinetic Equations

15.1 Derivation of Boltzmann Equation from Liouville Equation

15.2 Derivation of the Fokker-Planck (FP) Equation from Langevin Equation

15.3 Adiabatic Elimination of Fast Variables in FP Equation: Derivation of Generalized Kramers Equations

16 Relativistic First-Order Fluid Dynamic Equation

17 Doublet Scheme and its Applications

17.1 
Дополнительное описание: Notion of Effective Theories in Physical Sciences.- Divergence and Secular Term in the Perturbation Series of Ordinary Differential Equations.- Traditional Resummation Methods.- Elementary Introduction of the RG method in Terms of the Notion of Envelopes.



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия