This book is the first of a series which focuses on the interpolation and extrapolation of optimal designs, an area with significant applications in engineering, physics, chemistry and most experimental fields.
In this volume, the authors emphasize the importance of problems associated with the construction of design. After a brief introduction on how the theory of optimal designs meets the theory of the uniform approximation of functions, the authors introduce the basic elements to design planning and link the statistical theory of optimal design and the theory of the uniform approximation of functions.
The appendices provide the reader with material to accompany the proofs discussed throughout the book.
Автор: Vladimir V. Andrievskii; Hans-Peter Blatt Название: Discrepancy of Signed Measures and Polynomial Approximation ISBN: 1441931465 ISBN-13(EAN): 9781441931467 Издательство: Springer Рейтинг: Цена: 25853.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A concise outline of the basic facts of potential theory and quasiconformal mappings makes this book an ideal introduction for non-experts who want to get an idea of applications of potential theory and geometric function theory in various fields of construction analysis.
Автор: Manfred Reimer Название: Multivariate Polynomial Approximation ISBN: 3034894368 ISBN-13(EAN): 9783034894364 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators.
Автор: Bates Название: Numerically Solving Polynomial Systems with Bertini ISBN: 1611972698 ISBN-13(EAN): 9781611972696 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 15107.00 р. Наличие на складе: Поставка под заказ.
Описание: This book is a guide to concepts and practice in numerical algebraic geometry - the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files.Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations.Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.
Автор: Yengui, Ihsen Название: Constructive commutative algebra ISBN: 3319194933 ISBN-13(EAN): 9783319194936 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The main goal of this book is to find the constructive content hidden in abstract proofs of concrete theorems in Commutative Algebra, especially in well-known theorems concerning projective modules over polynomial rings (mainly the Quillen-Suslin theorem) and syzygies of multivariate polynomials with coefficients in a valuation ring.
Simple and constructive proofs of some results in the theory of projective modules over polynomial rings are also given, and light is cast upon recent progress on the Hermite ring and Gr bner ring conjectures. New conjectures on unimodular completion arising from our constructive approach to the unimodular completion problem are presented.
Constructive algebra can be understood as a first preprocessing step for computer algebra that leads to the discovery of general algorithms, even if they are sometimes not efficient. From a logical point of view, the dynamical evaluation gives a constructive substitute for two highly nonconstructive tools of abstract algebra: the Law of Excluded Middle and Zorn's Lemma. For instance, these tools are required in order to construct the complete prime factorization of an ideal in a Dedekind ring, whereas the dynamical method reveals the computational content of this construction. These lecture notes follow this dynamical philosophy.
Автор: Vui Ha Huy Et Al Название: Genericity In Polynomial Optimization ISBN: 1786342219 ISBN-13(EAN): 9781786342218 Издательство: World Scientific Publishing Цена: 11563.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.
Explanations focus on critical points and tangencies of polynomial optimization, HOlderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.
Автор: Mass Per Pettersson; Gianluca Iaccarino; Jan Nords Название: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations ISBN: 3319107135 ISBN-13(EAN): 9783319107134 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations
Автор: Miguel F. Anjos; Jean B. Lasserre Название: Handbook on Semidefinite, Conic and Polynomial Optimization ISBN: 1489978038 ISBN-13(EAN): 9781489978035 Издательство: Springer Рейтинг: Цена: 33401.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers the reader a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization and polynomial optimization. It covers theory, algorithms, software and applications.
Автор: N.Z. Shor Название: Nondifferentiable Optimization and Polynomial Problems ISBN: 0792349970 ISBN-13(EAN): 9780792349976 Издательство: Springer Рейтинг: Цена: 27245.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This work is devoted to an investigation of polynomial optimization problems, including Boolean problems which are the most important part of mathematical programming. It demonstrates methods of nondifferentiable optimization that can be used for finding solutions to many polynomial problems.
Автор: Peter Stefanidis; Andrzej P. Paplinski; Michael J. Название: Numerical Operations with Polynomial Matrices ISBN: 3540549927 ISBN-13(EAN): 9783540549925 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The purpose of this monograph is to describe a class of com-putational methods, based on polynomial matrices, for thedesign of dynamic compensators for linear multi-variablecontrol systems.
Автор: Graziano Chesi; Andrea Garulli; Alberto Tesi; Anto Название: Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems ISBN: 1848827806 ISBN-13(EAN): 9781848827806 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a number of techniques for robustness analysis of uncertain systems. In it, convex relaxations for several robustness problems are derived by exploiting and providing new results on the theory of homogenous polynomial forms.
Автор: E.V. Krishnamurthy Название: Error-Free Polynomial Matrix Computations ISBN: 1461295726 ISBN-13(EAN): 9781461295723 Издательство: Springer Рейтинг: Цена: 16070.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is written as an introduction to polynomial matrix computa- tions. This book is intended for seniors and graduate students in computer and system sciences, and mathematics, and for researchers in the fields of computer science, numerical analysis, systems theory, and computer algebra.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru