Multi-Level Bayesian Models for Environment Perception, Benedek Csaba
Автор: Tatarinova Tatiana, Schumitzky Alan Название: Nonlinear Mixture Models: A Bayesian Approach ISBN: 1848167563 ISBN-13(EAN): 9781848167568 Издательство: World Scientific Publishing Рейтинг: Цена: 14256.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Provides an introduction to the important subject of nonlinear mixture models from a Bayesian perspective. This title contains background material, a brief description of Markov chain theory, as well as novel algorithms and their applications.
Автор: Barber Название: Bayesian Time Series Models ISBN: 0521196760 ISBN-13(EAN): 9780521196765 Издательство: Cambridge Academ Рейтинг: Цена: 17582.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: `What`s going to happen next?` Time series data hold the answers. This ambitious book is the first unified treatment of the emerging knowledge-base in Bayesian time series techniques. Readers with only a basic understanding of applied probability are guided from fundamental concepts to the state-of-the-art in research and practice.
Автор: Huang, Mingfeng Название: High-rise buildings under multi-hazard environment ISBN: 9811094373 ISBN-13(EAN): 9789811094378 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering.
Автор: Weber Название: Benefits of Bayesian Network Models ISBN: 184821992X ISBN-13(EAN): 9781848219922 Издательство: Wiley Рейтинг: Цена: 22010.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry.
Автор: Marta Blangiardo,Michela Cameletti Название: Spatial and Spatio–temporal Bayesian Models with R – INLA ISBN: 1118326555 ISBN-13(EAN): 9781118326558 Издательство: Wiley Рейтинг: Цена: 9496.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics.
Автор: M. Jorge Cardoso; Ivor Simpson; Tal Arbel; Doina P Название: Bayesian and grAphical Models for Biomedical Imaging ISBN: 3319122886 ISBN-13(EAN): 9783319122885 Издательство: Springer Рейтинг: Цена: 5590.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
N3 Bias Field Correction Explained as a Bayesian Modeling Method.- A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging.- Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine.- Physiologically Informed Bayesian Analysis of ASL fMRI Data.- Bone Reposition Planning for Corrective Surgery Using Statistical Shape Model: Assessment of Differential Geometrical Features.- An Inference Language for Imaging.- An MRF-Based Discrete Optimization Framework for Combined DCE-MRI Motion Correction and Pharmacokinetic Parameter Estimation.- Learning Imaging Biomarker Trajectories from Noisy Alzheimer's Disease Data Using a Bayesian Multilevel Model.- Four Neuroimaging Questions that P-Values Cannot Answer (and Bayesian Analysis Can).- Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies.- A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions.
Описание: Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases.- BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases.- LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images.- Landmark-based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images.- Inferring Disease Status by non-Parametric Probabilistic Embedding.- A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images.- Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.- Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker.- Gaze2Segment: A Pilot Study for Integrating Eye-Tracking Technology into Medical Image Segmentation.- Automatic Detection of Histological Artifacts in Mouse Brain Slice Images.- Lung Nodule Classification by Jointly Using Visual Descriptors and Deep Features.- Representation Learning for Cross-Modality Classification.- Guideline-based Machine Learning for Standard Plane Extraction in 3D Cardiac Ultrasound.- A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images.- Bayesian Multiview Manifold Learning Applied to Hippocampus Shape and Clinical Score Data.- Rigid Slice-To-Volume Medical Image Registration through Markov Random Fields.- Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI data.- Non-local Graph-based Regularization for Deformable Image Registration.- Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru