Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Multi-Level Bayesian Models for Environment Perception, Benedek Csaba


Варианты приобретения
Цена: 16769.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Benedek Csaba
Название:  Multi-Level Bayesian Models for Environment Perception
ISBN: 9783030836535
Издательство: Springer
Классификация:




ISBN-10: 3030836533
Обложка/Формат: Hardcover
Страницы: 218
Вес: 0.49 кг.
Дата издания: 13.12.2021
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 70 illustrations, color; 31 illustrations, black and white; xiii, 202 p. 101 illus., 70 illus. in color.; 70 illustrations, color; 31 illustrations, b
Размер: 23.39 x 15.60 x 1.42 cm
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Low level scene understanding functions are formulated as various image segmentation problems, where the advantages of probabilistic inference techniques such as Markov Random Fields (MRF) or Mixed Markov Models are considered.


Nonlinear Mixture Models: A Bayesian Approach

Автор: Tatarinova Tatiana, Schumitzky Alan
Название: Nonlinear Mixture Models: A Bayesian Approach
ISBN: 1848167563 ISBN-13(EAN): 9781848167568
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14256.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides an introduction to the important subject of nonlinear mixture models from a Bayesian perspective. This title contains background material, a brief description of Markov chain theory, as well as novel algorithms and their applications.

Bayesian Time Series Models

Автор: Barber
Название: Bayesian Time Series Models
ISBN: 0521196760 ISBN-13(EAN): 9780521196765
Издательство: Cambridge Academ
Рейтинг:
Цена: 17582.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: `What`s going to happen next?` Time series data hold the answers. This ambitious book is the first unified treatment of the emerging knowledge-base in Bayesian time series techniques. Readers with only a basic understanding of applied probability are guided from fundamental concepts to the state-of-the-art in research and practice.

High-rise buildings under multi-hazard environment

Автор: Huang, Mingfeng
Название: High-rise buildings under multi-hazard environment
ISBN: 9811094373 ISBN-13(EAN): 9789811094378
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses performance-based seismic and wind-resistant design for high-rise building structures, with a particular focus on establishing an integrated approach for performance-based wind engineering, which is currently less advanced than seismic engineering.

Benefits of Bayesian Network Models

Автор: Weber
Название: Benefits of Bayesian Network Models
ISBN: 184821992X ISBN-13(EAN): 9781848219922
Издательство: Wiley
Рейтинг:
Цена: 22010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field. Unfortunately, this modeling formalism is not fully accepted in the industry.

Spatial and Spatio–temporal Bayesian Models with R – INLA

Автор: Marta Blangiardo,Michela Cameletti
Название: Spatial and Spatio–temporal Bayesian Models with R – INLA
ISBN: 1118326555 ISBN-13(EAN): 9781118326558
Издательство: Wiley
Рейтинг:
Цена: 9496.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics.

Bayesian and grAphical Models for Biomedical Imaging

Автор: M. Jorge Cardoso; Ivor Simpson; Tal Arbel; Doina P
Название: Bayesian and grAphical Models for Biomedical Imaging
ISBN: 3319122886 ISBN-13(EAN): 9783319122885
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

N3 Bias Field Correction Explained as a Bayesian Modeling Method.- A Bayesian Approach to Distinguishing Interdigitated Muscles in the Tongue from Limited Diffusion Weighted Imaging.- Optimal Joint Segmentation and Tracking of Escherichia Coli in the Mother Machine.- Physiologically Informed Bayesian Analysis of ASL fMRI Data.- Bone Reposition Planning for Corrective Surgery Using Statistical Shape Model: Assessment of Differential Geometrical Features.- An Inference Language for Imaging.- An MRF-Based Discrete Optimization Framework for Combined DCE-MRI Motion Correction and Pharmacokinetic Parameter Estimation.- Learning Imaging Biomarker Trajectories from Noisy Alzheimer's Disease Data Using a Bayesian Multilevel Model.- Four Neuroimaging Questions that P-Values Cannot Answer (and Bayesian Analysis Can).- Spherical Topic Models for Imaging Phenotype Discovery in Genetic Studies.- A Generative Model for Automatic Detection of Resolving Multiple Sclerosis Lesions.

Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging

Автор: Henning M?ller; B. Michael Kelm; Tal Arbel; Weidon
Название: Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging
ISBN: 3319611879 ISBN-13(EAN): 9783319611877
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Constructing Subject- and Disease-Specific Effect Maps: Application to Neurodegenerative Diseases.- BigBrain: Automated Cortical Parcellation and Comparison with Existing Brain Atlases.- LATEST: Local AdapTivE and Sequential Training for Tissue Segmentation of Isointense Infant Brain MR Images.- Landmark-based Alzheimer's Disease Diagnosis Using Longitudinal Structural MR Images.- Inferring Disease Status by non-Parametric Probabilistic Embedding.- A Lung Graph-Model for Pulmonary Hypertension and Pulmonary Embolism Detection on DECT Images.- Explaining Radiological Emphysema Subtypes with Unsupervised Texture Prototypes: MESA COPD Study.- Automatic Segmentation of Abdominal MRI Using Selective Sampling and Random Walker.- Gaze2Segment: A Pilot Study for Integrating Eye-Tracking Technology into Medical Image Segmentation.- Automatic Detection of Histological Artifacts in Mouse Brain Slice Images.- Lung Nodule Classification by Jointly Using Visual Descriptors and Deep Features.- Representation Learning for Cross-Modality Classification.- Guideline-based Machine Learning for Standard Plane Extraction in 3D Cardiac Ultrasound.- A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images.- Bayesian Multiview Manifold Learning Applied to Hippocampus Shape and Clinical Score Data.- Rigid Slice-To-Volume Medical Image Registration through Markov Random Fields.- Sparse Probabilistic Parallel Factor Analysis for the Modeling of PET and Task-fMRI data.- Non-local Graph-based Regularization for Deformable Image Registration.- Unsupervised Framework for Consistent Longitudinal MS Lesion Segmentation.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия