Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Data Mining Techniques for the Life Sciences, Carugo Oliviero, Eisenhaber Frank


Варианты приобретения
Цена: 18167.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Carugo Oliviero, Eisenhaber Frank
Название:  Data Mining Techniques for the Life Sciences
ISBN: 9781071620946
Издательство: Springer
Классификация:

ISBN-10: 1071620940
Обложка/Формат: Hardcover
Страницы: 406
Вес: 0.92 кг.
Дата издания: 05.06.2022
Серия: Methods in molecular biology
Язык: English
Издание: 3rd ed. 2022
Иллюстрации: 88 tables, color; 77 illustrations, color; 11 illustrations, black and white; xiii, 390 p. 88 illus., 77 illus. in color.
Размер: 254 x 178 x 24
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

Part I: DATABASES

1 EBI data resources

Rolf Apweiler and Amonida Zadissa

2 IMEx databases: displaying molecular interactions into a single, standards-compliant dataset

Pablo Porras, Sandra Orchard and Luana Licata

3 Protein Three-dimensional Structure Databases

Vaishali P. Waman, Christine Orengo, Gerard J. Kleywegt and Arthur M. Lesk

Part II: PREDICTION METHODS

4 Predicting protein conformational disorder and disordered binding sites

Ketty Tamburrini, Giulia Pesce, Juliet Nilsson, Frank Gondelaud, Andrey V. Kajava, Jean-Guy Berrin and Sonia Longhi

5 Profiles of natural and designed protein-like sequences effectively bridge protein sequence gaps: Implications in distant homology detection

Gayatri Kumar, Narayanaswamy Srinivasa and Sankaran Sandhya

6 Turning failures into applications: the problem of protein ΔΔG prediction

Rita Casadio, Castrense Savojardo, Piero Fariselli, Emidio Capriotti and Pier Luigi Martelli

7 Dissecting the genome for drug response prediction

Gerardo Pepe, Chiara Carrino, Luca Parca, Manuela Helmer-Citterich

8 Prediction of the effect of pH on the aggregation and conditional folding of intrinsically disordered proteins with SolupHred and DispHred

Valentнn Iglesias, Carlos Pintado-Grima, Jaime Santos, Marc Fornt and Salvador Ventura

9 Extracting the dynamic motion of proteins using Normal Mode Analysis

Jacob A. Bauer and Vladena Bauerovб

Part III: DATA QUALITY

10 Pre- and Post- Publication Verification for Reproducible Data Mining in Macromolecular Crystallography

John R Helliwell

11 Soft Statistical Mechanics for Biology

Mariano Bizzarri, Alessandro Giuliani

12 Uses and abuses of the atomic displacement parameters in structural biology

Oliviero Carugo

13 Optimizing the Parametrization of Homologue Classification in the Pan-Genome Computation for a Bacterial Species: Case Study Streptococcus pyogenes

Erwin Tantoso, Birgit Eisenhaber and Frank Eisenhaber

Part VI: BIG DATA

14 Computational pipeline for rational drug combination screening in patient-derived cells

Paschalis Athanasiadis, Aleksandr Ianevski, Sigrid Skеnland and Tero Aittokallio

15 Deep Mining from Omics Data

Abeer Alzubaidi and Jonathan Tepper


Дополнительное описание: EBI data resources.- IMEx databases: displaying molecular interactions into a single, standards-compliant dataset.- Protein Three-dimensional Structure Databases.- Predicting protein conformational disorder and disordered binding sites.- Profiles of natur



Introductory Physics for Biological Scientists

Автор: Aegerter Christof M.
Название: Introductory Physics for Biological Scientists
ISBN: 1108466508 ISBN-13(EAN): 9781108466509
Издательство: Cambridge Academ
Рейтинг:
Цена: 9979.00 р.
Наличие на складе: Поставка под заказ.

Описание: An introduction to the fundamental physical principles related to the study of biological phenomena. Chapters are structured around biological examples, and the topics covered include waves, optics and mechanics. With quiz questions and a detailed appendix, it is perfect for students looking to develop their quantitative and analytical tools.

Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner

Автор: Galit Shmueli, Peter C. Bruce, Nitin R. Patel
Название: Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner
ISBN: 1118729277 ISBN-13(EAN): 9781118729274
Издательство: Wiley
Рейтинг:
Цена: 17741.00 р.
Наличие на складе: Поставка под заказ.

Описание: Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies.

Data Mining Techniques for the Life Sciences

Автор: Oliviero Carugo; Frank Eisenhaber
Название: Data Mining Techniques for the Life Sciences
ISBN: 1493935704 ISBN-13(EAN): 9781493935703
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Part I: Data Basses

1. Update on Genomic Databases and Resources at the National Center for Biotechnology Information

Tatiana Tatusova

2. Protein Structure Databases

Roman A. Laskowski

3. The MIntAct Project and Molecular Interaction Databases

Luana Licata and Sandra Orchard

4. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants

M. Michael Gromiha, P. Anoosha, and Liang-Tsung Huang

5. Classification and Exploration of 3D Protein Domain Interactions using Kbdock

Anisah W. Ghoorah, Marie-Dominique Devignes, Malika Smaпl-Tabbone, David W. Ritchie

6. Data Mining of Macromolecular Structures

Bart van Beusekom, Anastassis Perrakis, and Robbie P. Joosten

7. Criteria to Extract High Quality Protein Data Bank Subsets for Structure Users

Oliviero Carugo and Kristina Djinovic-Carugo

8. Homology-based Annotation of Large Protein Datasets

Marco Punta and Jaina Mistry

PART II: Computational Techniques

9. Identification and Correction Of Erroneous Protein Sequences in Public Databases

Lбszlу Patthy

10. Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps Of Protein Assemblies Using Evolutionary Information From Aligned Homologous Proteins Ramachandran Rakesh and Narayanaswamy Srinivasan

11. Systematic Exploration of an Efficient Amino Acid Substitution Matrix, MIQS

Kentaro Tomii and Kazunori Yamada

12. Promises and Pitfalls of High Throughput Biological Assays

Greg Finak and Raphael Gottardo

13. Optimizing RNA-seq Mapping with STAR

Alexander Dobin and Thomas R. Gingeras


PART III: Prediction Methods

14. Predicting Conformational Disorder

Philippe Lieutaud, Franзois Ferron, and Sonia Longhi

15. Classification of Protein Kinases Influenced By Conservation of Substrate Binding Residues

Chintalapati Janaki, Narayanaswamy Srinivasan, Malini Manoharan

16. Spectral-Statistical Approach for Revealing Latent Regular Structures in DNA Sequence

Maria Chaley and Vladimir Kutyrkin

17.Protein Crystallizability

Pawel Smialowski and Philip Wong

18. Analysis and Visualization of ChIP-Seq and RNA-Seq Sequence Alignments using ngs.plot

Yong-Hwee Eddie Loh, and Li Shen

19. Dataming with ontologies

Robert Hoehndorft, Georgios V. Gkoutos, and Paul N. Schofield

20. Functional Analysis of Metabolomics Data

Mуnica Chagoyen, Javier Lуpez-Ibбсez, and Florencio Pazos

21. Bacterial Genomics Data Analysis in the Next-Generation Sequencing Era

Massimiliano Orsini, Gianmauro Cuccuru, Paolo Uva, and Giorgio Fotia

22. A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-Synonymous Variants

Stefano Castellana, Caterina Fusilli, and Tommaso Mazza

23. Recommendation Techniques for Drug-Target Interaction Prediction and Drug-Repositioning

Salvatore Alaimo, Rosalba Giugno, and Alfredo Pulvirenti 24. Protein Residue Contacts and Prediction Methods

Badri Adhikari and Jianlin Cheng

25. The Recipe for Protein Sequence-Based Function Prediction and its Implementation in the Annotator Software Environment

Birgit Eisenhaber, Durga Kuchibhatla, Westley Sherman, Fernanda L. Sirota, Igor N. Berezovsky, Wing-Cheong Wong, and Frank Eisenhaber


Part IV: Big Data

26. Big Data, Evolution, and Metagenomes: Predicting Disease from Gut Microbiota Codon Usage Profiles

Maja Fabijanic and Kristian Vlahoviček

27. Big Data in Plant Science: Resources and Data Mining Tools for Plant Genomics and Prote

Data Mining Techniques for the Life Sciences

Автор: Oliviero Carugo; Frank Eisenhaber
Название: Data Mining Techniques for the Life Sciences
ISBN: 1493956884 ISBN-13(EAN): 9781493956883
Издательство: Springer
Рейтинг:
Цена: 20263.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, experts in the field contribute valuable information about the sources of information and the techniques used for "mining" new insights out of databases. The book covers a wide range of biological systems and in silico approaches.

Time and Causality Across the Sciences

Автор: Samantha Kleinberg
Название: Time and Causality Across the Sciences
ISBN: 1108476678 ISBN-13(EAN): 9781108476676
Издательство: Cambridge Academ
Рейтинг:
Цена: 9186.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides an entry point for researchers in any field, bringing together perspectives collected from a large body of work on causality across disciplines. Topics include whether quantum mechanics allows causes to precede their effects, the integration of mechanisms, and insight into the role played by intervention and timing information.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Data Mining: Concepts and Techniques,

Автор: Jiawei Han
Название: Data Mining: Concepts and Techniques,
ISBN: 0123814790 ISBN-13(EAN): 9780123814791
Издательство: Elsevier Science
Рейтинг:
Цена: 9720.00 р.
Наличие на складе: Поставка под заказ.

Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.

Biologically-Inspired Techniques For Knowledge Discovery And Data Mining

Автор: Alam
Название: Biologically-Inspired Techniques For Knowledge Discovery And Data Mining
ISBN: 1466660783 ISBN-13(EAN): 9781466660786
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 38669.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Biologically-inspired data mining has a wide variety of applications in areas such as data clustering, classification, sequential pattern mining, and information extraction in healthcare and bioinformatics. Over the past decade, research materials in this area have dramatically increased, providing clear evidence of the popularity of these techniques.Biologically-Inspired Techniques for Knowledge Discovery and Data Mining exemplifies prestigious research and shares the practices that have allowed these areas to grow and flourish. This essential reference publication highlights contemporary findings in the area of biologically-inspired techniques in data mining domains and their implementation in real-life problems. Providing quality work from established researchers, this publication serves to extend existing knowledge within the research communities of data mining and knowledge discovery, as well as for academicians and students in the field.

Developing Churn Models Using Data Mining Techniques And Social Network Analysis

Автор: Klepac, Kopal & Mrsic
Название: Developing Churn Models Using Data Mining Techniques And Social Network Analysis
ISBN: 1466662883 ISBN-13(EAN): 9781466662889
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 27027.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios.Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students.

Improving Knowledge Discovery Through The Integration Of Data Mining Techniques

Автор: Usman
Название: Improving Knowledge Discovery Through The Integration Of Data Mining Techniques
ISBN: 1466685131 ISBN-13(EAN): 9781466685130
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 32848.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data warehousing is an important topic that is of interest to both the industry and the knowledge engineering research communities. Both data mining and data warehousing technologies have similar objectives and can potentially benefit from each other’s methods to facilitate knowledge discovery.Improving Knowledge Discovery through the Integration of Data Mining Techniques provides insight concerning the integration of data mining and data warehousing for enhancing the knowledge discovery process. Decision makers, academicians, researchers, advanced-level students, technology developers, and business intelligence professionals will find this book useful in furthering their research exposure to relevant topics in knowledge discovery.

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 9262.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book
Data Mining: Tools, Techniques, Frameworks and Applications

Автор: Benson Mick
Название: Data Mining: Tools, Techniques, Frameworks and Applications
ISBN: 1682850005 ISBN-13(EAN): 9781682850008
Издательство: Неизвестно
Цена: 20116.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data mining is an important branch of computer science and information technology management that deals with the discovery and analysis of datasets. This book covers in detail some existent theories as well as innovative concepts revolving around data mining such as bio data analytics, analysis of social structures and patterns, correlations and fluctuations, etc. With its detailed analyses and data, this book will prove immensely beneficial to professionals and students involved in this area at various levels.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия