Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Signals, Instrumentation, Control, And Machine Learning: An Integrative Introduction, Joseph Bentsman


Варианты приобретения
Цена: 14256.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Joseph Bentsman
Название:  Signals, Instrumentation, Control, And Machine Learning: An Integrative Introduction
ISBN: 9789811252310
Издательство: World Scientific Publishing
Классификация:

ISBN-10: 9811252319
Обложка/Формат: Paperback
Страницы: 844
Вес: 0.96 кг.
Дата издания: 08.07.2022
Серия: Physics
Язык: English
Размер: 253 x 177 x 29
Читательская аудитория: Tertiary education (us: college)
Ключевые слова: Signal processing, TECHNOLOGY & ENGINEERING / Signals & Signal
Рейтинг:
Поставляется из: Англии
Описание: This book stems from a unique and a highly effective approach to introducing signal processing, instrumentation, diagnostics, filtering, control, system integration, and machine learning.It presents the interactive industrial grade software testbed of mold oscillator that captures the distortion induced by beam resonance and uses this testbed as a virtual lab to generate input-output data records that permit unravelling complex system behavior, enhancing signal processing, modeling, and simulation background, and testing controller designs.All topics are presented in a visually rich and mathematically well supported, but not analytically overburdened format. By incorporating software testbed into homework and project assignments, the narrative guides a reader in an easily followed step-by-step fashion towards finding the mold oscillator disturbance removal solution currently used in the actual steel production, while covering the key signal processing, control, system integration, and machine learning concepts.The presentation is extensively class-tested and refined though the six-year usage of the book material in a required engineering course at the University of Illinois at Urbana-Champaign.


Digital signal processing

Автор: Anand, R.
Название: Digital signal processing
ISBN: 1683928024 ISBN-13(EAN): 9781683928027
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 8959.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designed to cover the fundamental concepts of digital signal processing, this book introduces topics such as discrete-time signals, the z-transform, frequency analysis, discrete and fast Fourier transforms, digital filters, FIR, statistical DSP, applications, and more.

Grid Enabled Remote Instrumentation

Автор: Franco Davoli; Norbert Meyer; Roberto Pugliese; Sa
Название: Grid Enabled Remote Instrumentation
ISBN: 1441935061 ISBN-13(EAN): 9781441935069
Издательство: Springer
Рейтинг:
Цена: 32651.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Grid architectures, which are viewed as tools for the integration of distributed resources, play a significant role as managers of computational resources. This book focuses on a number of aspects related to the effective exploitation of remote instrumentation on the grid.

Distributed Cooperative Laboratories: Networking, Instrumentation, and Measurements

Автор: Franco Davoli; Sergio Palazzo; Sandro Zappatore
Название: Distributed Cooperative Laboratories: Networking, Instrumentation, and Measurements
ISBN: 1441940022 ISBN-13(EAN): 9781441940025
Издательство: Springer
Рейтинг:
Цена: 25853.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is devoted to the investigation of the main issues related to the sustainable realization of tele-laboratories, where real and virtual instrumentation can be shared and used in a collaborative environment.

Sensors, Circuits and Instrumentation: Extended Papers from the Multiconference on Signals, Systems and Devices 2014

Автор: Olfa Kanoun
Название: Sensors, Circuits and Instrumentation: Extended Papers from the Multiconference on Signals, Systems and Devices 2014
ISBN: 3110446197 ISBN-13(EAN): 9783110446197
Издательство: Walter de Gruyter
Цена: 11148.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Signal Processing is one of themost importantspecializations in engineering, and computer sciences. It derives input from physics, mathematics and is an indispensable feature of all natural- and life sciences in research and in application. The new s

Sensors, Circuits and Instrumentation: Extended Papers from the International Conference on Sensors, Circuits and Instrumentation Systems, 2014

Автор: Olfa Kanoun, Faouzi Derbel, Nabil Derbel
Название: Sensors, Circuits and Instrumentation: Extended Papers from the International Conference on Sensors, Circuits and Instrumentation Systems, 2014
ISBN: 3110468190 ISBN-13(EAN): 9783110468199
Издательство: Walter de Gruyter
Цена: 11148.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: THE SERIES: ADVANCES IN SYSTEMS, SIGNALS AND DEVICES Systems, Signals & Devices is one of the large specializations in electrical engineering, mechanical engineering and computer sciences. It derives input from physics, mathematics and is an indispensable feature of all natural- and life sciences in research and in application. The new series “Advances in Systems, Signals and Devices” presents original publications mainly from speakers on the International Multi-Conference on Systems, Signal and Devices but also from other international authors. The Conference is a forum for researchers and specialists in different fi elds covering all types of sensors and measurement systems.

Introduction to Statistical Machine Learning

Автор: Masashi Sugiyama
Название: Introduction to Statistical Machine Learning
ISBN: 0128021217 ISBN-13(EAN): 9780128021217
Издательство: Elsevier Science
Рейтинг:
Цена: 17180.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials.

Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.

  • Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus
  • Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning
  • Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks
  • Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials
Introduction to Transfer Learning

Автор: Wang
Название: Introduction to Transfer Learning
ISBN: 9811975833 ISBN-13(EAN): 9789811975837
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning. This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a “student’s” perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice.

Introduction to Digital Communications

Автор: Wayne Stark
Название: Introduction to Digital Communications
ISBN: 1009220810 ISBN-13(EAN): 9781009220811
Издательство: Cambridge Academ
Рейтинг:
Цена: 12355.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Master the fundamentals of digital communications systems with this accessible and hands-on introductory textbook, carefully interweaving theory and practice. The just-in-time approach introduces essential background as needed, keeping academic theory firmly linked to practical applications. The example-led teaching frames key concepts in the context of real-world systems, such as 5G, WiFi, and GPS. Stark provides foundational material on the trade-offs between energy and bandwidth efficiency, giving students a solid grounding in the fundamental challenges of designing digital communications systems. Features include over 300 illustrative figures, 80 examples, and 130 end-of-chapter problems to reinforce student understanding, with solutions for instructors. Accompanied online by lecture slides, computational MATLAB® and Python resources, and supporting data sets, this is the ideal introduction to digital communications for senior undergraduate and graduate students in electrical engineering.

A Hands-On Introduction to Machine Learning

Автор: Chirag Shah
Название: A Hands-On Introduction to Machine Learning
ISBN: 1009123300 ISBN-13(EAN): 9781009123303
Издательство: Cambridge Academ
Рейтинг:
Цена: 7762.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Packed with real-world examples, industry insights and practical activities, this textbook is designed to teach machine learning in a way that is easy to understand and apply. It assumes only a basic knowledge of technology, making it an ideal resource for students and professionals, including those who are new to computer science.

Reinforcement learning

Автор: Sutton, Richard S. Barto, Andrew G.
Название: Reinforcement learning
ISBN: 0262193981 ISBN-13(EAN): 9780262193986
Издательство: MIT Press
Рейтинг:
Цена: 10040.00 р.
Наличие на складе: Нет в наличии.

Описание: An account of key ideas and algorithms in reinforcement learning. The discussion ranges from the history of the field`s intellectual foundations to recent developments and applications. Areas studied include reinforcement learning problems in terms of Markov decision problems and solution methods.

Introduction to Environmental Data Science

Автор: William W. Hsieh
Название: Introduction to Environmental Data Science
ISBN: 1107065550 ISBN-13(EAN): 9781107065550
Издательство: Cambridge Academ
Рейтинг:
Цена: 9821.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Statistical and machine learning methods have many applications in the environmental sciences, including prediction and data analysis in meteorology, hydrology and oceanography; pattern recognition for satellite images from remote sensing; management of agriculture and forests; assessment of climate change; and much more. With rapid advances in machine learning in the last decade, this book provides an urgently needed, comprehensive guide to machine learning and statistics for students and researchers interested in environmental data science. It includes intuitive explanations covering the relevant background mathematics, with examples drawn from the environmental sciences. A broad range of topics is covered, including correlation, regression, classification, clustering, neural networks, random forests, boosting, kernel methods, evolutionary algorithms and deep learning, as well as the recent merging of machine learning and physics. End?of?chapter exercises allow readers to develop their problem-solving skills, and online datasets allow readers to practise analysis of real data.

Sparsity Methods for Systems and Control

Автор: Nagahara Masaaki
Название: Sparsity Methods for Systems and Control
ISBN: 1680837249 ISBN-13(EAN): 9781680837247
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12335.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Offers a comprehensive guide to sparsity methods for systems and control, from standard sparsity methods in finite-dimensional vector spaces to optimal control methods in infinite-dimensional function spaces.The primary objective of this book is to show how to use sparsity methods for several engineering problems.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия