Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Spectral Methods for Data Science: A Statistical Perspective, Cong Ma, Jianqing Fan, Yuejie Chi, Yuxin Chen


Варианты приобретения
Цена: 13721.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Cong Ma, Jianqing Fan, Yuejie Chi, Yuxin Chen
Название:  Spectral Methods for Data Science: A Statistical Perspective
ISBN: 9781680838961
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1680838962
Обложка/Формат: Paperback
Страницы: 254
Вес: 0.37 кг.
Дата издания: 30.10.2021
Серия: Foundations and trends (r) in machine learning
Язык: English
Размер: 234 x 156 x 14
Читательская аудитория: Professional and scholarly
Ключевые слова: Information technology: general issues,Machine learning, COMPUTERS / Machine Theory
Подзаголовок: A statistical perspective
Рейтинг:
Поставляется из: Англии
Описание: Offers a systematic, yet accessible introduction to spectral methods from a modern statistical perspective, highlighting their algorithmic implications in diverse large-scale applications. The authors provide a unified and comprehensive treatment that establishes the theoretical underpinnings for spectral methods.


The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Computer Age Statistical Inference, Student Edition

Автор: Bradley Efron , Trevor Hastie
Название: Computer Age Statistical Inference, Student Edition
ISBN: 1108823416 ISBN-13(EAN): 9781108823418
Издательство: Cambridge Academ
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

Statistical physics of data assimilation and machine learning

Автор: Abarbanel, Henry D. I. (university Of California, San Diego)
Название: Statistical physics of data assimilation and machine learning
ISBN: 1316519635 ISBN-13(EAN): 9781316519639
Издательство: Cambridge Academ
Рейтинг:
Цена: 8710.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The theory of data assimilation and machine learning is introduced in an accessible and pedagogical manner, with a focus on the underlying statistical physics. This modern and cross-disciplinary book is suitable for undergraduate and graduate students from science and engineering without specialized experience of statistical physics.

Seriation in Combinatorial and Statistical Data Analysis

Автор: Lerman Israлl Cйsar, Leredde Henri
Название: Seriation in Combinatorial and Statistical Data Analysis
ISBN: 3030926931 ISBN-13(EAN): 9783030926939
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph offers an original broad and very diverse exploration of the seriation domain in data analysis, together with building a specific relation to clustering. Relative to a data table crossing a set of objects and a set of descriptive attributes, the search for orders which correspond respectively to these two sets is formalized mathematically and statistically. State-of-the-art methods are created and compared with classical methods and a thorough understanding of the mutual relationships between these methods is clearly expressed. The authors distinguish two families of methods: * Geometric representation methods * Algorithmic and Combinatorial methods Original and accurate methods are provided in the framework for both families. Their basis and comparison is made on both theoretical and experimental levels. The experimental analysis is very varied and very comprehensive. Seriation in Combinatorial and Statistical Data Analysis has a unique character in the literature falling within the fields of Data Analysis, Data Mining and Knowledge Discovery. It will be a valuable resource for students and researchers in the latter fields.

Time and Causality Across the Sciences

Автор: Samantha Kleinberg
Название: Time and Causality Across the Sciences
ISBN: 1108476678 ISBN-13(EAN): 9781108476676
Издательство: Cambridge Academ
Рейтинг:
Цена: 9186.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides an entry point for researchers in any field, bringing together perspectives collected from a large body of work on causality across disciplines. Topics include whether quantum mechanics allows causes to precede their effects, the integration of mechanisms, and insight into the role played by intervention and timing information.

Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications

Автор: Srinivasa K. G., Siddesh G. M., Manisekhar S. R.
Название: Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications
ISBN: 9811524440 ISBN-13(EAN): 9789811524448
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics.

A Computational Approach to Statistical Learning

Автор: Arnold
Название: A Computational Approach to Statistical Learning
ISBN: 113804637X ISBN-13(EAN): 9781138046375
Издательство: Taylor&Francis
Рейтинг:
Цена: 12554.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A Computational Approach to Statistical Learning gives a novel introduction to predictive modeling by focusing on the algorithmic and numeric motivations behind popular statistical methods. The text contains annotated code to over 80 original reference functions. These functions provide minimal working implementations of common statistical learning algorithms. Every chapter concludes with a fully worked out application that illustrates predictive modeling tasks using a real-world dataset. The text begins with a detailed analysis of linear models and ordinary least squares. Subsequent chapters explore extensions such as ridge regression, generalized linear models, and additive models. The second half focuses on the use of general-purpose algorithms for convex optimization and their application to tasks in statistical learning. Models covered include the elastic net, dense neural networks, convolutional neural networks (CNNs), and spectral clustering. A unifying theme throughout the text is the use of optimization theory in the description of predictive models, with a particular focus on the singular value decomposition (SVD). Through this theme, the computational approach motivates and clarifies the relationships between various predictive models. Taylor Arnold is an assistant professor of statistics at the University of Richmond. His work at the intersection of computer vision, natural language processing, and digital humanities has been supported by multiple grants from the National Endowment for the Humanities (NEH) and the American Council of Learned Societies (ACLS). His first book, Humanities Data in R, was published in 2015. Michael Kane is an assistant professor of biostatistics at Yale University. He is the recipient of grants from the National Institutes of Health (NIH), DARPA, and the Bill and Melinda Gates Foundation. His R package bigmemory won the Chamber's prize for statistical software in 2010. Bryan Lewis is an applied mathematician and author of many popular R packages, including irlba, doRedis, and threejs.

Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data

Автор: Bergmeir
Название: Enhanced Machine Learning and Data Mining Methods for Analysing Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data
ISBN: 3658203668 ISBN-13(EAN): 9783658203665
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Philipp Bergmeir works on the development and enhancement of data mining and machine learning methods with the aim of analysing automatically huge amounts of load spectrum data that are recorded for large hybrid electric vehicle fleets.

Statistical Learning and Modeling in Data Analysis: Methods and Applications

Автор: Balzano Simona, Porzio Giovanni C., Salvatore Renato
Название: Statistical Learning and Modeling in Data Analysis: Methods and Applications
ISBN: 3030699439 ISBN-13(EAN): 9783030699437
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The contributions gathered in this book focus on modern methods for statistical learning and modeling in data analysis and present a series of engaging real-world applications.

Principles of Statistical Analysis: Learning from Randomized Experiments

Автор: Ery Arias-Castro
Название: Principles of Statistical Analysis: Learning from Randomized Experiments
ISBN: 1108489672 ISBN-13(EAN): 9781108489676
Издательство: Cambridge Academ
Рейтинг:
Цена: 13147.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This concise course in principled data analysis for the mathematically literate uses survey sampling and designed experiments as a foundation for statistical inference. Covering essentials for advanced undergraduates and selected topics typically taught at the graduate level, its 700 problems - many computational - build understanding and skills.

Principles of Statistical Analysis: Learning from Randomized Experiments

Автор: Ery Arias-Castro
Название: Principles of Statistical Analysis: Learning from Randomized Experiments
ISBN: 1108747442 ISBN-13(EAN): 9781108747448
Издательство: Cambridge Academ
Рейтинг:
Цена: 4910.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This concise course in principled data analysis for the mathematically literate uses survey sampling and designed experiments as a foundation for statistical inference. Covering essentials for advanced undergraduates and selected topics typically taught at the graduate level, its 700 problems - many computational - build understanding and skills.

Statistical Methods for Recommender Systems

Автор: Agarwal
Название: Statistical Methods for Recommender Systems
ISBN: 1107036070 ISBN-13(EAN): 9781107036079
Издательство: Cambridge Academ
Рейтинг:
Цена: 7602.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия