Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Minimum-Distortion Embedding, Akshay Agrawal, Alnur Ali, Stephen Boyd


Варианты приобретения
Цена: 13721.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Akshay Agrawal, Alnur Ali, Stephen Boyd
Название:  Minimum-Distortion Embedding
ISBN: 9781680838886
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1680838881
Обложка/Формат: Paperback
Страницы: 172
Вес: 0.25 кг.
Дата издания: 30.09.2021
Серия: Foundations and trends (r) in machine learning
Язык: English
Размер: 234 x 156 x 10
Читательская аудитория: Professional and scholarly
Ключевые слова: Information technology: general issues,Machine learning, COMPUTERS / Machine Theory
Рейтинг:
Поставляется из: Англии
Описание: Presents a general framework for faithful embedding called minimum-distortion embedding (MDE) that generalizes the common cases in which similarities between items are described by weights or distances. The MDE framework is simple but general.


Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs

Автор: Aggarwal Manasvi, Murty M. N.
Название: Machine Learning in Social Networks: Embedding Nodes, Edges, Communities, and Graphs
ISBN: 9813340215 ISBN-13(EAN): 9789813340213
Издательство: Springer
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Introduction

1.1 introduction

1.2 Notations used in Book

1.3 Contents covered in this book

2 Representations of Networks

2.1 Introduction

2.2 Networks Represented as Graphs

2.3 Data Structures to Represent Graphs

2.3.1 Matrix Representation

2.3.2 Adjacency List

2.4 Network Embeddings

2.5 Evaluation Datasets

2.5.1 Evaluation Datasets

2.5.2 Evaluation Metrics

2.6 Machine Learning Downstream Tasks

2.6.1 Classification

2.6.2 Clustering

2.6.3 Link Prediction (LP)

2.6.4 Visualization

2.6.5 Network Reconstruction

2.7 Embeddings based on Matrix Factorization

2.7.1 Singular Value Decomposition (SVD)

2.7.2 Matrix Factorization based Clustering

2.7.3 Soft Clustering as Matrix Factorization

2.7.4 Non-negative Matrix factorization (NMF)

2.8 Word2vec

2.8.1 Skipgram model

2.9 Learning Network Embeddings

2.9.1 Supervised Learning

2.9.2 Unsupervised Learning

2.9.3 Node and Edge Embeddings

2.9.4 Graph Embedding

2.10 Summary

3 Deep Learning

3.1 Introduction

3.2 Neural Networks

3.2.1 Perceptron

3.2.2 Characteristics of Neural Networks

3.2.3 Multilayer Perceptron Networks

3.2.4 Training MLP Networks

3.3 Convolution Neural Networks

3.3.1 Activation Function

3.3.2 Initialization of Weights

3.3.3 Deep Feedforward Neural Network

3.4 Recurrent Networks

3.4.1 Recurrent Neural Networks

3.4.2 Long Short Term Memory

3.4.3 Different Gates used by LSTM

3.4.4 Training of LSTM Models

3.5 Learning Representations using Autoencoders

3.5.1 Types of Autoencoders

3.6 Summary

References

4 Embedding Nodes and Edge

4.1 Introduction

4.2 Representation of Node and Edges as Vectors

4.3 Embeddings based on Random Walks

4.4 Embeddings based on Matrix Factorization

4.5 Graph Neural Network Models

4.6 State of the art algorithms

4.7 Evaluation methods and Machine Learning tasks

4.8 Summary

References

5 Embedding Graphs

5.1 Introduction

5.2 Representation of Graphs as Vectors

5.3 Graph Representation using Node Embeddings

5.4 Graph Pooling Techniques

5.4.1 Global Pooling Methods

5.4.2 Hierarchical Pooling Methods

5.5 State of the art algorithms

5.6 Evaluation methods and Machine Learning tasks

5.7 Summary

References

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия