Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Advances and Open Problems in Federated Learning, Adria Gascon, Aleksandra Korolova, Ananda Theertha Suresh, Arjun Nitin Bhagoji, Aurelien Bellet, Ayfer Ozgur, Badih Ghazi, Ben Hutchinson, Brendan Ave


Варианты приобретения
Цена: 13721.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Adria Gascon, Aleksandra Korolova, Ananda Theertha Suresh, Arjun Nitin Bhagoji, Aurelien Bellet, Ayfer Ozgur, Badih Ghazi, Ben Hutchinson, Brendan Ave
Название:  Advances and Open Problems in Federated Learning
ISBN: 9781680837889
Издательство: Mare Nostrum (Eurospan)
Классификация:
ISBN-10: 1680837885
Обложка/Формат: Paperback
Страницы: 224
Вес: 0.32 кг.
Дата издания: 30.06.2021
Серия: Foundations and trends (r) in machine learning
Язык: English
Размер: 234 x 156 x 12
Читательская аудитория: Professional and scholarly
Ключевые слова: Information technology: general issues,Machine learning, COMPUTERS / Machine Theory
Рейтинг:
Поставляется из: Англии
Описание: The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. This book describes the latest state-of-the art.


Federated Learning for Wireless Networks

Автор: Hong Choong Seon, Khan Latif U., Chen Mingzhe
Название: Federated Learning for Wireless Networks
ISBN: 9811649626 ISBN-13(EAN): 9789811649622
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy.

Federated Learning

Автор: Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, Han Yu
Название: Federated Learning
ISBN: 1681736977 ISBN-13(EAN): 9781681736976
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12335.00 р.
Наличие на складе: Нет в наличии.

Описание: How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Federated Learning

Автор: Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, Han Yu
Название: Federated Learning
ISBN: 1681736993 ISBN-13(EAN): 9781681736990
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 15523.00 р.
Наличие на складе: Нет в наличии.

Описание: How is it possible to allow multiple data owners to collaboratively train and use a shared prediction model while keeping all the local training data private? Traditional machine learning approaches need to combine all data at one location, typically a data center, which may very well violate the laws on user privacy and data confidentiality. Today, many parts of the world demand that technology companies treat user data carefully according to user-privacy laws. The European Union's General Data Protection Regulation (GDPR) is a prime example. In this book, we describe how federated machine learning addresses this problem with novel solutions combining distributed machine learning, cryptography and security, and incentive mechanism design based on economic principles and game theory. We explain different types of privacy-preserving machine learning solutions and their technological backgrounds, and highlight some representative practical use cases. We show how federated learning can become the foundation of next-generation machine learning that caters to technological and societal needs for responsible AI development and application.

Demystifying Federated Learning for Blockchain and Industrial Internet of Things

Автор: Gaurav Dhiman, Sandeep Kautish
Название: Demystifying Federated Learning for Blockchain and Industrial Internet of Things
ISBN: 1668437333 ISBN-13(EAN): 9781668437339
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 42134.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Rediscovers, redefines, and reestablishes the most recent applications of federated learning using blockchain and IIoT to optimize data for next-generation networks. The book provides insights to readers in a way of inculcating the theme that shapes the next generation of secure communication.

Federated Learning Systems: Towards Next-Generation AI

Автор: Rehman Muhammad Habib Ur, Gaber Mohamed Medhat
Название: Federated Learning Systems: Towards Next-Generation AI
ISBN: 3030706036 ISBN-13(EAN): 9783030706036
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development.

Demystifying Federated Learning for Blockchain and Industrial Internet of Things

Автор: Gaurav Dhiman, Sandeep Kautish
Название: Demystifying Federated Learning for Blockchain and Industrial Internet of Things
ISBN: 1668437341 ISBN-13(EAN): 9781668437346
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 31878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Rediscovers, redefines, and reestablishes the most recent applications of federated learning using blockchain and IIoT to optimize data for next-generation networks. The book provides insights to readers in a way of inculcating the theme that shapes the next generation of secure communication.

Intelligent Computing and Block Chain: First Benchcouncil International Federated Conferences, Ficc 2020, Qingdao, China, October 30 - November 3, 202

Автор: Gao Wanling, Hwang Kai, Wang Changyun
Название: Intelligent Computing and Block Chain: First Benchcouncil International Federated Conferences, Ficc 2020, Qingdao, China, October 30 - November 3, 202
ISBN: 9811611599 ISBN-13(EAN): 9789811611599
Издательство: Springer
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed post-conference proceedings of the Second BenchCouncil International Federated Intelligent Computing and Block Chain Conferences, FICC 2020, held in Qingdao, China, in October/ November 2020.The 32 full papers and 6 short papers presented were carefully reviewed and selected from 103 submissions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия