Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Towards Explainable Fuzzy AI: Concepts, Paradigms, Tools, and Techniques, Kreinovich


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kreinovich
Название:  Towards Explainable Fuzzy AI: Concepts, Paradigms, Tools, and Techniques
ISBN: 9783031099731
Издательство: Springer
Классификация:

ISBN-10: 3031099737
Обложка/Формат: Hardback
Страницы: 130
Вес: 0.38 кг.
Дата издания: 01.10.2022
Серия: Studies in Computational Intelligence
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 31 illustrations, black and white; x, 130 p. 31 illus.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Modern AI techniques –- especially deep learning –- provide, in many cases, very good recommendations: where a self-driving car should go, whether to give a company a loan, etc. The problem is that not all these recommendations are good -- and since deep learning provides no explanations, we cannot tell which recommendations are good. It is therefore desirable to provide natural-language explanation of the numerical AI recommendations. The need to connect natural language rules and numerical decisions is known since 1960s, when the need emerged to incorporate expert knowledge -- described by imprecise words like small -- into control and decision making. For this incorporation, a special fuzzy technique was invented, that led to many successful applications. This book described how this technique can help to make AI more explainable.The book can be recommended for students, researchers, and practitioners interested in explainable AI.
Дополнительное описание: Why Explainable AI? Why Fuzzy Explainable AI? What Is Fuzzy?.- Defuzzification.- Which Fuzzy Techniques?.- So How Can We Design Explainable Fuzzy AI: Ideas.- How to Make Machine Learning Itself More Explainable.- Final Self-Test.



Explainable AI and Other Applications of Fuzzy Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processin

Автор: Rayz Julia, Raskin Victor, Dick Scott
Название: Explainable AI and Other Applications of Fuzzy Techniques: Proceedings of the 2021 Annual Conference of the North American Fuzzy Information Processin
ISBN: 303082098X ISBN-13(EAN): 9783030820985
Издательство: Springer
Рейтинг:
Цена: 34937.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book focuses on an overview of the AI techniques, their foundations, their applications, and remaining challenges and open problems. Many artificial intelligence (AI) techniques do not explain their recommendations. Providing natural-language explanations for numerical AI recommendations is one of the main challenges of modern AI. To provide such explanations, a natural idea is to use techniques specifically designed to relate numerical recommendations and natural-language descriptions, namely fuzzy techniques.

This book is of interest to practitioners who want to use fuzzy techniques to make AI applications explainable, to researchers who may want to extend the ideas from these papers to new application areas, and to graduate students who are interested in the state-of-the-art of fuzzy techniques and of explainable AI--in short, to anyone who is interested in problems involving fuzziness and AI in general.


Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools

Автор: Dombi Jуzsef, Csiszбr Orsolya
Название: Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
ISBN: 3030722821 ISBN-13(EAN): 9783030722821
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient.

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance

Автор: Rutkowski
Название: Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance
ISBN: 3030755231 ISBN-13(EAN): 9783030755232
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations.

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance

Автор: Rutkowski Tom
Название: Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance
ISBN: 3030755207 ISBN-13(EAN): 9783030755201
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations.

Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligence (RAI)

Автор: Singh, Java
Название: Biomedical Data Analysis and Processing Using Explainable (XAI) and Responsive Artificial Intelligence (RAI)
ISBN: 9811914753 ISBN-13(EAN): 9789811914751
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book discusses Explainable (XAI) and Responsive Artificial Intelligence (RAI) for biomedical and healthcare applications. The book explains both positive as well as negative findings obtained by explainable AI techniques.

Explainable artificial intelligence for smart cities

Название: Explainable artificial intelligence for smart cities
ISBN: 1032001127 ISBN-13(EAN): 9781032001128
Издательство: Taylor&Francis
Рейтинг:
Цена: 15310.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The objective of this book is to focus on Explainable Artificial Intelligence (XAI) in smart city development. This book provides a timely, global reference source about cutting edge research efforts to ensure the XAI factor in smart city-oriented developments.

Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability

Автор: Shaban-Nejad Arash, Michalowski Martin, Buckeridge David L.
Название: Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability
ISBN: 3030533549 ISBN-13(EAN): 9783030533540
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book highlights the latest advances in the application of artificial intelligence and data science in health care and medicine.

Explainable AI Recipes

Автор: Mishra
Название: Explainable AI Recipes
ISBN: 1484290283 ISBN-13(EAN): 9781484290286
Издательство: Springer
Рейтинг:
Цена: 4890.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution, and activation attribution. After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses. What You Will Learn * Create code snippets and explain machine learning models using Python * Leverage deep learning models using the latest code with agile implementations * Build, train, and explain neural network models designed to scale * Understand the different variants of neural network models Who This Book Is For AI engineers, data scientists, and software developers interested in XAI

Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems

Автор: Mar Marcos; Jose M. Juarez; Richard Lenz; Grzegorz
Название: Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems
ISBN: 3030374459 ISBN-13(EAN): 9783030374457
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems.

Artificial Intelligence for Solar Photovoltaic Systems

Автор: Edited By Bhavnesh Kumar, Bhanu Pratap, Vivek Shri
Название: Artificial Intelligence for Solar Photovoltaic Systems
ISBN: 1032054417 ISBN-13(EAN): 9781032054414
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a clear explanation of the application of artificial intelligence to solve the challenges in solar photovoltaic technology. It introduces the readers about new AI-based approaches and technologies helpful in managing and operating solar photovoltaic systems effectively.

Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps

Автор: Rothman Denis
Название: Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps
ISBN: 1800208138 ISBN-13(EAN): 9781800208131
Издательство: Неизвестно
Рейтинг:
Цена: 10114.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In today`s era of AI, accurately interpreting and communicating trustworthy, fair, and secure AI findings have become a crucial skill to master. This book bridges the gap between AI`s pitfalls and potential by helping you build the ability to leverage machine learning with Python to visualize and integrate AI.

Explainable, Transparent Autonomous Agents and Multi-Agent Systems

Автор: Davide Calvaresi; Amro Najjar; Michael Schumacher;
Название: Explainable, Transparent Autonomous Agents and Multi-Agent Systems
ISBN: 303030390X ISBN-13(EAN): 9783030303907
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the First International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems, EXTRAAMAS 2019, held in Montreal, Canada, in May 2019. The 12 revised and extended papers presented were carefully selected from 23 submissions. explainable agent simulations;


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия