Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context, Kunczik


Варианты приобретения
Цена: 11878.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kunczik
Название:  Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context
ISBN: 9783658376154
Издательство: Springer
Классификация:



ISBN-10: 3658376155
Обложка/Формат: Soft cover
Страницы: 134
Вес: 0.21 кг.
Дата издания: 15.06.2022
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 38 illustrations, black and white; xviii, 134 p. 38 illus.
Размер: 147 x 209 x 16
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book explores the combination of Reinforcement Learning and Quantum Computing in the light of complex attacker-defender scenarios. Reinforcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational power to obtain the optimal solution. The upcoming field of Quantum Computing is a promising path for solving computationally complex problems. Therefore, this work explores a hybrid quantum approach to policy gradient methods in Reinforcement Learning. It proposes a novel quantum REINFORCE algorithm that enhances its classical counterpart by Quantum Variational Circuits. The new algorithm is compared to classical algorithms regarding the convergence speed and memory usage on several attacker-defender scenarios with increasing complexity. In addition, to study its applicability on todays NISQ hardware, the algorithm is evaluated on IBMs quantum computers, which is accompanied by an in-depth analysis of the advantages of Quantum Reinforcement Learning.
Дополнительное описание: Motivation: Complex Attacker-Defender Scenarios - The eternal con?ict., The Information Game - A special Attacker-Defender Scenario., Reinforcement Learning and Bellman’s Principle of Optimality., Quantum Reinforcement Learning - Connecting Reinforcement



Reinforcement Learning for Sequential Decision and Optimal Control

Автор: Shengbo Eben Li
Название: Reinforcement Learning for Sequential Decision and Optimal Control
ISBN: 9811977836 ISBN-13(EAN): 9789811977831
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Поставка под заказ.

Описание: Have you ever wondered how AlphaZero learns to defeat the top human Go players? Do you have any clues about how an autonomous driving system can gradually develop self-driving skills beyond normal drivers? What is the key that enables AlphaStar to make decisions in Starcraft, a notoriously difficult strategy game that has partial information and complex rules? The core mechanism underlying those recent technical breakthroughs is reinforcement learning (RL), a theory that can help an agent to develop the self-evolution ability through continuing environment interactions. In the past few years, the AI community has witnessed phenomenal success of reinforcement learning in various fields, including chess games, computer games and robotic control. RL is also considered to be a promising and powerful tool to create general artificial intelligence in the future. As an interdisciplinary field of trial-and-error learning and optimal control, RL resembles how humans reinforce their intelligence by interacting with the environment and provides a principled solution for sequential decision making and optimal control in large-scale and complex problems. Since RL contains a wide range of new concepts and theories, scholars may be plagued by a number of questions: What is the inherent mechanism of reinforcement learning? What is the internal connection between RL and optimal control? How has RL evolved in the past few decades, and what are the milestones? How do we choose and implement practical and effective RL algorithms for real-world scenarios? What are the key challenges that RL faces today, and how can we solve them? What is the current trend of RL research? You can find answers to all those questions in this book. The purpose of the book is to help researchers and practitioners take a comprehensive view of RL and understand the in-depth connection between RL and optimal control. The book includes not only systematic and thorough explanations of theoretical basics but also methodical guidance of practical algorithm implementations. The book intends to provide a comprehensive coverage of both classic theories and recent achievements, and the content is carefully and logically organized, including basic topics such as the main concepts and terminologies of RL, Markov decision process (MDP), Bellman’s optimality condition, Monte Carlo learning, temporal difference learning, stochastic dynamic programming, function approximation, policy gradient methods, approximate dynamic programming, and deep RL, as well as the latest advances in action and state constraints, safety guarantee, reference harmonization, robust RL, partially observable MDP, multiagent RL, inverse RL, offline RL, and so on.

Model-based reinforcement learning :

Автор: Farsi, Milad,
Название: Model-based reinforcement learning :
ISBN: 111980857X ISBN-13(EAN): 9781119808572
Издательство: Wiley
Рейтинг:
Цена: 16315.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is for researchers and students in statistics, data mining, computer science, machine learning, marketing and also practitioners who implement recommender systems. It provides an in-depth discussion of challenges encountered in deploying real-life large-scale systems and state-of-the-art solutions in personalization, explore/exploit, dimension reduction and multi-objective optimization.

Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies

Автор: Li, Chong
Название: Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies
ISBN: 1138543535 ISBN-13(EAN): 9781138543539
Издательство: Taylor&Francis
Рейтинг:
Цена: 12707.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

Handbook of Reinforcement Learning and Control

Автор: Vamvoudakis Kyriakos G., Wan Yan, Lewis Frank L.
Название: Handbook of Reinforcement Learning and Control
ISBN: 3030609898 ISBN-13(EAN): 9783030609894
Издательство: Springer
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The Cognitive Dialogue: A New Architecture for Perception and Cognition.- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems.- Quantum Reinforcement Learning in Changing Environment.- The Role of Thermodynamics in the Future Research Directions in Control and Learning.- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming.- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning.- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach.- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay.- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast.- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning.- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games.- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles.- Long-Term Impacts of Fair Machine Learning.- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization.- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization.- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics.- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning.- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications.- Reinforcement Learning Applications, An Industrial Perspective.- A Hybrid Dynamical Systems Perspective of Reinforcement Learning.- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras.- Mixed Modality Learning.- Computational Intelligence in Uncertainty Quantification for Learning Control and Games.- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback.- Robust Autonomous Driving with Humans in the Loop.- Boundedly Rational Reinforcement Learning for Secure Control.

TensorFlow Reinforcement Learning Quick Start Guide

Автор: Balakrishnan Kaushik
Название: TensorFlow Reinforcement Learning Quick Start Guide
ISBN: 1789533589 ISBN-13(EAN): 9781789533583
Издательство: Неизвестно
Рейтинг:
Цена: 4964.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is an essential guide for anyone interested in Reinforcement Learning. The book provides an actionable reference for Reinforcement Learning algorithms and their applications using TensorFlow and Python. It will help readers leverage the power of algorithms such as Deep Q-Network (DQN), Deep Deterministic Policy Gradients (DDPG), and ...

Reinforcement Learning Aided Performance Optimization of Feedback Control Systems

Автор: Hua, Changsheng
Название: Reinforcement Learning Aided Performance Optimization of Feedback Control Systems
ISBN: 3658330333 ISBN-13(EAN): 9783658330330
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Changsheng Hua proposes two approaches, an input/output recovery approach and a performance index-based approach for robustness and performance optimization of feedback control systems.

Mastering Reinforcement Learning with Python: Build next-generation, self-learning models using reinforcement learning techniques and best practices

Автор: Bilgin Enes
Название: Mastering Reinforcement Learning with Python: Build next-generation, self-learning models using reinforcement learning techniques and best practices
ISBN: 1838644148 ISBN-13(EAN): 9781838644147
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on expert-level explanations and implementations of scalable reinforcement learning algorithms and approaches. Starting with the fundamentals, the book covers state-of-the-art methods from bandit problems to meta-reinforcement learning. You`ll also explore practical examples inspired by real-life problems from the industry.

TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications

Автор: Palanisamy Praveen
Название: TensorFlow 2 Reinforcement Learning Cookbook: Over 50 recipes to help you build, train, and deploy learning agents for real-world applications
ISBN: 183898254X ISBN-13(EAN): 9781838982546
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This cookbook will help you to gain a solid understanding of deep reinforcement learning (RL) algorithms with the help of concise, easy-to-follow implementations from scratch. You`ll learn how to implement these algorithms with minimal code and develop AI applications to solve real-world and business problems using RL.

Reinforcement learning for cyber-physical systems

Автор: Li, Chong Qiu, Meikang
Название: Reinforcement learning for cyber-physical systems
ISBN: 0367656639 ISBN-13(EAN): 9780367656638
Издательство: Taylor&Francis
Рейтинг:
Цена: 6889.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces reinforcement learning, and provides novel ideas and use cases to demonstrate the benefits of using reinforcement learning for Cyber Physical Systems. Two important case studies on applying reinforcement learning to cybersecurity problems are included.

An Introduction to Deep Reinforcement Learning

Автор: Francois-Lavet Vincent, Henderson Peter, Islam Riashat
Название: An Introduction to Deep Reinforcement Learning
ISBN: 1680835386 ISBN-13(EAN): 9781680835380
Издательство: Неизвестно
Рейтинг:
Цена: 13656.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Provides a starting point for understanding deep reinforcement learning. Although written at a research level it provides a comprehensive and accessible introduction to deep reinforcement learning models, algorithms and techniques.

Statistical Reinforcement Learning

Автор: Sugiyama, Masashi
Название: Statistical Reinforcement Learning
ISBN: 0367575868 ISBN-13(EAN): 9780367575861
Издательство: Taylor&Francis
Рейтинг:
Цена: 6889.00 р.
Наличие на складе: Поставка под заказ.

Risk-Sensitive Reinforcement Learning Via Policy Gradient Search

Автор: Michael C. Fu, Prashanth L. A.
Название: Risk-Sensitive Reinforcement Learning Via Policy Gradient Search
ISBN: 1638280266 ISBN-13(EAN): 9781638280262
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 14414.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning (RL) is one of the foundational pillars of artificial intelligence and machine learning. An important consideration in any optimization or control problem is the notion of risk, but its incorporation into RL has been a recent development. This monograph surveys research on risk-sensitive RL that uses policy gradient search.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия