Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Gillespie Algorithms for Stochastic Multiagent Dynamics in Populations and Networks, Christian L. Vestergaard, Naoki Masuda


Варианты приобретения
Цена: 2851.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Christian L. Vestergaard, Naoki Masuda
Название:  Gillespie Algorithms for Stochastic Multiagent Dynamics in Populations and Networks
ISBN: 9781009239141
Издательство: Cambridge Academ
Классификация:
ISBN-10: 1009239147
Обложка/Формат: Paperback
Страницы: 106
Вес: 0.17 кг.
Дата издания: 05.01.2023
Серия: Elements in the structure and dynamics of complex networks
Язык: English
Иллюстрации: Worked examples or exercises
Размер: 222 x 145 x 20
Читательская аудитория: General (us: trade)
Ключевые слова: Discrete mathematics,Mathematical physics,Maths for computer scientists,Statistical physics, SCIENCE / Physics / Mathematical & Computational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Many multiagent dynamics can be modeled as a stochastic process in which the agents in the system change their state over time in interaction with each other. The Gillespie algorithms are popular algorithms that exactly simulate such stochastic multiagent dynamics when each state change is driven by a discrete event, the dynamics is defined in continuous time, and the stochastic law of event occurrence is governed by independent Poisson processes. The first main part of this volume provides a tutorial on the Gillespie algorithms focusing on simulation of social multiagent dynamics occurring in populations and networks. The authors clarify why one should use the continuous-time models and the Gillespie algorithms in many cases, instead of easier-to-understand discrete-time models. The remainder of the Element reviews recent extensions of the Gillespie algorithms aiming to add more reality to the model (i.e., non-Poissonian cases) or to speed up the simulations. This title is also available as open access on Cambridge Core.


Evolutionary Algorithms, Swarm Dynamics and Complex Networks

Автор: Ivan Zelinka; Guanrong Chen
Название: Evolutionary Algorithms, Swarm Dynamics and Complex Networks
ISBN: 3662556618 ISBN-13(EAN): 9783662556610
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks.

Evolutionary Algorithms, Swarm Dynamics and Complex Networks

Автор: Ivan Zelinka; Guanrong Chen
Название: Evolutionary Algorithms, Swarm Dynamics and Complex Networks
ISBN: 3662572478 ISBN-13(EAN): 9783662572474
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Описание: Evolutionary algorithms constitute a class of well-known algorithms, which are designed based on the Darwinian theory of evolution and Mendelian theory of heritage. They are partly based on random and partly based on deterministic principles. Due to this nature, it is challenging to predict and control its performance in solving complex nonlinear problems. Recently, the study of evolutionary dynamics is focused not only on the traditional investigations but also on the understanding and analyzing new principles, with the intention of controlling and utilizing their properties and performances toward more effective real-world applications. In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks. In fact, it includes more advanced complex networks and incorporates them with the CMLs (coupled map lattices), which are usually used for spatiotemporal complex systems simulation and analysis, based on the observation that chaos in CML can be controlled, so does evolution dynamics. All the chapter authors are, to the best of our knowledge, originators of the ideas mentioned above and researchers on evolutionary algorithms and chaotic dynamics as well as complex networks, who will provide benefits to the readers regarding modern scientific research on related subjects. 


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия