Inference and Learning from Data: Volume 3: Learning, Ali H. Sayed
Автор: Strang Gilbert Название: Linear Algebra and Learning from Data ISBN: 0692196382 ISBN-13(EAN): 9780692196380 Издательство: Cambridge Academ Рейтинг: Цена: 9978.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Автор: Bradley Efron , Trevor Hastie Название: Computer Age Statistical Inference, Student Edition ISBN: 1108823416 ISBN-13(EAN): 9781108823418 Издательство: Cambridge Academ Рейтинг: Цена: 5069.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.
Автор: Ali H. Sayed Название: Inference and Learning from Data: Volume 1: Foundations ISBN: 1009218123 ISBN-13(EAN): 9781009218122 Издательство: Cambridge Academ Рейтинг: Цена: 13939.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Written in an engaging and rigorous style by a world authority in the field, this is an accessible and comprehensive introduction to core topics in inference and learning. With downloadable Matlab code and solutions for instructors, this is the ideal introduction for students of data science, machine learning, and engineering.
Автор: Sayed, Ali H. (ecole Polytechnique Federale De Lausanne) Название: Inference and learning from data ISBN: 1009218107 ISBN-13(EAN): 9781009218108 Издательство: Cambridge Academ Рейтинг: Цена: 33264.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This extraordinary three-volume work provides an accessible, comprehensive introduction to mathematical and statistical techniques for data-driven learning and inference. Ideal for early-career researchers and graduate students across signal processing, machine learning, statistics and data science.
Автор: Olivier Capp?; Eric Moulines; Tobias Ryden Название: Inference in Hidden Markov Models ISBN: 1441923195 ISBN-13(EAN): 9781441923196 Издательство: Springer Рейтинг: Цена: 27251.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. The book builds on recent developments, both at the foundational level and the computational level, to present a self-contained view.
Описание: The integration of logic and probability combines the capability of the first to represent complex relations among entities with the capability of the latter to model uncertainty over attributes and relations. Logic programming provides a Turing complete language based on logic and thus represent an excellent candidate for the integration.Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. One of most successful approaches to Probabilistic Logic Programming is the Distribution Semantics, where a probabilistic logic program defines a probability distribution over normal logic programs and the probability of a ground query is then obtained from the joint distribution of the query and the programs. Foundations of Probabilistic Logic Programming aims at providing an overview of the field of Probabilistic Logic Programming, with a special emphasis on languages under the Distribution Semantics. The book presents the main ideas for semantics, inference and learning and highlights connections between the methods.Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online.
Автор: Galindez Olascoaga Название: Hardware-Aware Probabilistic Machine Learning Models ISBN: 3030740447 ISBN-13(EAN): 9783030740443 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them.
Автор: Peters Jonas, Janzing Dominik, Scholkopf Bernhard Название: Elements of Causal Inference: Foundations and Learning Algorithms ISBN: 0262037319 ISBN-13(EAN): 9780262037310 Издательство: MIT Press Рейтинг: Цена: 7719.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.
The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.
After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.
The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
Автор: Vasant Honavar; Giora Slutzki Название: Grammatical Inference ISBN: 3540647767 ISBN-13(EAN): 9783540647768 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A collection of 23 papers from a colloquium on grammatical inference. They address: automata induction; grammar induction; automatic language acquisition; and applications in areas such as syntactic pattern recognition, adaptive intelligent agents, diagnosis, computational biology and data mining.
Автор: Pengkun Yang, Yihong Wu Название: Polynomial Methods in Statistical Inference: Theory and Practice ISBN: 1680837303 ISBN-13(EAN): 9781680837308 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 12197.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The authors of this monograph survey a suite of techniques based on the theory of polynomials, collectively referred to as polynomial methods. These techniques provide useful tools for the design of highly practical algorithms with provable optimality, and for establishing the fundamental limits of inference problems through moment matching.
Автор: Wieczorek Wojciech Название: Grammatical Inference: Algorithms, Routines and Applications ISBN: 3319835890 ISBN-13(EAN): 9783319835891 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on grammatical inference, presenting classic and modern methods of grammatical inference from the perspective of practitioners.
Автор: Denis Bosq; Hung T. Nguyen Название: A Course in Stochastic Processes ISBN: 9048147131 ISBN-13(EAN): 9789048147137 Издательство: Springer Рейтинг: Цена: 35079.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Having in mind a mixed audience of students from different departments (Math- ematics, Statistics, Economics, Engineering, etc.) we have presented the material in each lesson in the most simple way, with emphasis on moti- vation of concepts, aspects of applications and computational procedures.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru