Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Inference and Learning from Data: Volume 3: Learning, Ali H. Sayed


Варианты приобретения
Цена: 12355.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-09-08
Ориентировочная дата поставки: начало Ноября

Добавить в корзину
в Мои желания

Автор: Ali H. Sayed
Название:  Inference and Learning from Data: Volume 3: Learning
ISBN: 9781009218283
Издательство: Cambridge Academ
Классификация:




ISBN-10: 100921828X
Обложка/Формат: Hardback
Страницы: 990
Вес: 1.75 кг.
Дата издания: 22.12.2022
Серия: Physics
Язык: English
Издание: New ed
Иллюстрации: Worked examples or exercises
Размер: 147 x 252 x 43
Читательская аудитория: General (us: trade)
Ключевые слова: Communications engineering / telecommunications,Information theory,Machine learning,Pattern recognition,Signal processing, TECHNOLOGY & ENGINEERING / Signals & Signal
Подзаголовок: Learning
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Written in an engaging and rigorous style by a world authority in the field, this is an accessible and comprehensive introduction to learning methods. With downloadable Matlab code and solutions for instructors, this is the ideal introduction for students of data science, machine learning and engineering.


Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

Computer Age Statistical Inference, Student Edition

Автор: Bradley Efron , Trevor Hastie
Название: Computer Age Statistical Inference, Student Edition
ISBN: 1108823416 ISBN-13(EAN): 9781108823418
Издательство: Cambridge Academ
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

Inference and Learning from Data: Volume 2: Inference

Автор: Ali H. Sayed
Название: Inference and Learning from Data: Volume 2: Inference
ISBN: 1009218263 ISBN-13(EAN): 9781009218269
Издательство: Cambridge Academ
Рейтинг:
Цена: 12355.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written in an engaging and rigorous style by a world authority in the field, this is an accessible and comprehensive introduction to techniques for inferring unknown variables and quantities. With downloadable Matlab code and solutions for instructors, this is the ideal introduction for students of data science, machine learning and engineering.

Inference and Learning from Data: Volume 1: Foundations

Автор: Ali H. Sayed
Название: Inference and Learning from Data: Volume 1: Foundations
ISBN: 1009218123 ISBN-13(EAN): 9781009218122
Издательство: Cambridge Academ
Рейтинг:
Цена: 13939.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written in an engaging and rigorous style by a world authority in the field, this is an accessible and comprehensive introduction to core topics in inference and learning. With downloadable Matlab code and solutions for instructors, this is the ideal introduction for students of data science, machine learning, and engineering.

Secure Networked Inference with Unreliable Data Sources

Автор: Aditya Vempaty; Bhavya Kailkhura; Pramod K. Varshn
Название: Secure Networked Inference with Unreliable Data Sources
ISBN: 9811347654 ISBN-13(EAN): 9789811347658
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book presents theory and algorithms for secure networked inference in the presence of Byzantines. It derives fundamental limits of networked inference in the presence of Byzantine data and designs robust strategies to ensure reliable performance for several practical network architectures. In particular, it addresses inference (or learning) processes such as detection, estimation or classification, and parallel, hierarchical, and fully decentralized (peer-to-peer) system architectures. Furthermore, it discusses a number of new directions and heuristics to tackle the problem of design complexity in these practical network architectures for inference.

Inference and learning from data

Автор: Sayed, Ali H. (ecole Polytechnique Federale De Lausanne)
Название: Inference and learning from data
ISBN: 1009218107 ISBN-13(EAN): 9781009218108
Издательство: Cambridge Academ
Рейтинг:
Цена: 33264.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This extraordinary three-volume work provides an accessible, comprehensive introduction to mathematical and statistical techniques for data-driven learning and inference. Ideal for early-career researchers and graduate students across signal processing, machine learning, statistics and data science.

Inference in Hidden Markov Models

Автор: Olivier Capp?; Eric Moulines; Tobias Ryden
Название: Inference in Hidden Markov Models
ISBN: 1441923195 ISBN-13(EAN): 9781441923196
Издательство: Springer
Рейтинг:
Цена: 27251.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. The book builds on recent developments, both at the foundational level and the computational level, to present a self-contained view.

Empirical Inference

Автор: Bernhard Sch?lkopf; Zhiyuan Luo; Vladimir Vovk
Название: Empirical Inference
ISBN: 3642411355 ISBN-13(EAN): 9783642411359
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book celebrates the work of Vladimir Vapnik, developer of the support vector machine, which combines methods from statistical learning and functional analysis to create a new approach to learning problems, and who continues as active as ever in his field.

Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning

Автор: Riguzzi Fabrizio
Название: Foundations of Probabilistic Logic Programming: Languages, Semantics, Inference and Learning
ISBN: 8770220182 ISBN-13(EAN): 9788770220187
Издательство: Taylor&Francis
Рейтинг:
Цена: 14086.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The integration of logic and probability combines the capability of the first to represent complex relations among entities with the capability of the latter to model uncertainty over attributes and relations. Logic programming provides a Turing complete language based on logic and thus represent an excellent candidate for the integration.Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. One of most successful approaches to Probabilistic Logic Programming is the Distribution Semantics, where a probabilistic logic program defines a probability distribution over normal logic programs and the probability of a ground query is then obtained from the joint distribution of the query and the programs. Foundations of Probabilistic Logic Programming aims at providing an overview of the field of Probabilistic Logic Programming, with a special emphasis on languages under the Distribution Semantics. The book presents the main ideas for semantics, inference and learning and highlights connections between the methods.Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online.

Hardware-Aware Probabilistic Machine Learning Models: Learning, Inference and Use Cases

Автор: Galindez Olascoaga Laura Isabel, Meert Wannes, Verhelst Marian
Название: Hardware-Aware Probabilistic Machine Learning Models: Learning, Inference and Use Cases
ISBN: 3030740412 ISBN-13(EAN): 9783030740412
Издательство: Springer
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them.

Hardware-Aware Probabilistic Machine Learning Models

Автор: Galindez Olascoaga
Название: Hardware-Aware Probabilistic Machine Learning Models
ISBN: 3030740447 ISBN-13(EAN): 9783030740443
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book proposes probabilistic machine learning models that represent the hardware properties of the device hosting them.

Elements of Causal Inference: Foundations and Learning Algorithms

Автор: Peters Jonas, Janzing Dominik, Scholkopf Bernhard
Название: Elements of Causal Inference: Foundations and Learning Algorithms
ISBN: 0262037319 ISBN-13(EAN): 9780262037310
Издательство: MIT Press
Рейтинг:
Цена: 7719.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.

The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.

After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.

The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия