Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Data Science for Complex Systems, Anindya S. Chakrabarti, Anirban Chakraborti, K. Shuvo Bakar


Варианты приобретения
Цена: 8710.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Anindya S. Chakrabarti, Anirban Chakraborti, K. Shuvo Bakar
Название:  Data Science for Complex Systems
ISBN: 9781108844796
Издательство: Cambridge Academ
Классификация:




ISBN-10: 1108844790
Обложка/Формат: Hardback
Страницы: 289
Вес: 0.47 кг.
Дата издания: 25.05.2023
Язык: English
Иллюстрации: Worked examples or exercises; worked examples or exercises
Размер: 159 x 236 x 25
Читательская аудитория: General (us: trade)
Ключевые слова: Complex analysis, complex variables,Data capture & analysis,Mathematical theory of computation,Research methods: general,Statistical physics, SCIENCE / Physics / Mathematical & Computational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Many real-life systems are dynamic, evolving, and intertwined. Examples of such systems displaying complexity, can be found in a wide variety of contexts ranging from economics to biology, to the environmental and physical sciences. The study of complex systems involves analysis and interpretation of vast quantities of data, which necessitates the application of many classical and modern tools and techniques from statistics, network science, machine learning, and agent-based modelling. Drawing from the latest research, this self-contained and pedagogical text describes some of the most important and widely used methods, emphasising both empirical and theoretical approaches. More broadly, this book provides an accessible guide to a data-driven toolkit for scientists, engineers, and social scientists who require effective analysis of large quantities of data, whether that be related to social networks, financial markets, economies or other types of complex systems.


Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems

Автор: M. Reza Rahimi Tabar
Название: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems
ISBN: 3030184714 ISBN-13(EAN): 9783030184711
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book focuses on a central question in the field of complex systems: Given a fluctuating (in time or space), uni- or multi-variant sequentially measured set of experimental data (even noisy data), how should one analyse non-parametrically the data, assess underlying trends, uncover characteristics of the fluctuations (including diffusion and jump contributions), and construct a stochastic evolution equation?Here, the term 'non-parametrically' exemplifies that all the functions and parameters of the constructed stochastic evolution equation can be determined directly from the measured data.The book provides an overview of methods that have been developed for the analysis of fluctuating time series and of spatially disordered structures. Thanks to its feasibility and simplicity, it has been successfully applied to fluctuating time series and spatially disordered structures of complex systems studied in scientific fields such as physics, astrophysics, meteorology, earth science, engineering, finance, medicine and the neurosciences, and has led to a number of important results.The book also includes the numerical and analytical approaches to the analyses of complex time series that are most common in the physical and natural sciences. Further, it is self-contained and readily accessible to students, scientists, and researchers who are familiar with traditional methods of mathematics, such as ordinary, and partial differential equations.The codes for analysing continuous time series are available in an R package developed by the research group Turbulence, Wind energy and Stochastic (TWiSt) at the Carl von Ossietzky University of Oldenburg under the supervision of Prof. Dr. Joachim Peinke. This package makes it possible to extract the (stochastic) evolution equation underlying a set of data or measurements.

Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes

Автор: Rahimi Tabar M. Reza
Название: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems: Using the Methods of Stochastic Processes
ISBN: 3030184749 ISBN-13(EAN): 9783030184742
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:
​1 Introduction.- 2 Introduction to Stochastic Processes.- 3 Kramers-Moyal Expansion and Fokker-Planck Equation.- 4 Continuous Stochastic Process.- 5 The Langevin Equation and Wiener Process.- 6 Stochastic Integration, It o and Stratonovich Calculi.- 7 Equivalence of Langevin and Fokker-Planck Equations.- 8 Examples of Stochastic Calculus.-9 Langevin Dynamics in Higher Dimensions.- 10 Levy Noise Driven Langevin Equation and its Time Series-Based Reconstruction.- 11 Stochastic Processes with Jumps and Non-Vanishing Higher-Order Kramers-Moyal Coefficients.- 12 Jump-Diffusion Processes.- 13 Two-Dimensional (Bivariate) Jump-Diffusion Processes.- 14 Numerical Solution of Stochastic Differential Equations: Diffusion and Jump-Diffusion Processes.- 15 The Friedrich-Peinke Approach to Reconstruction of Dynamical Equation for Time Series: Complexity in View of Stochastic Processes.- 16 How To Set Up Stochastic Equations For Real-World Processes: Markov-Einstein Time Scale.- 17 Reconstruction of Stochastic Dynamical Equations: Exemplary Stationary Diffusion and Jump-Diffusion Processes.- 18 The Kramers-Moyal Coefficients of Non-Stationary Time series in The Presence of Microstructure (Measurement) Noise.- 19 Influence of Finite Time Step in Estimating of the Kramers-Moyal Coefficients.- 20 Distinguishing Diffusive and Jumpy Behaviors in Real-World Time Series.- 21 Reconstruction of Langevin and Jump-Diffusion Dynamics From Empirical Uni- and Bivariate Time Series.- 22 Applications and Outlook.- 23 Epileptic Brain Dynamics.



ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия