Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Recurrent neural networks :, Amit Kumar Tyagi, Ajith Abraham


Варианты приобретения
Цена: 25265.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Amit Kumar Tyagi, Ajith Abraham   (Амит Кумар Тьяги)
Название:  Recurrent neural networks :
Перевод названия: Амит Кумар Тьяги: Рекуррентные нейронные сети
ISBN: 9781032081649
Издательство: Taylor&Francis
Классификация:
ISBN-10: 1032081643
Обложка/Формат: Hardback
Страницы: 396
Вес: 0.92 кг.
Дата издания: 08.08.2022
Язык: English
Иллюстрации: 72 tables, black and white; 131 line drawings, black and white; 70 halftones, black and white; 86 illustrations, color; 115 illustrations, black and white
Размер: 234 x 156
Читательская аудитория: Postgraduate, research & scholarly
Подзаголовок: Concepts and applications
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: This book comprehensively covers concepts of recurrent neural networks and discusses practical issues such as predictability and nonlinearity detecting. It will an ideal text for senior undergraduate, graduate students, researchers, and professionals in the fields of electrical, electronics and communication, and computer engineering.


Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications

Автор: Lin Xiao, Lei Jia
Название: Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications
ISBN: 1119985994 ISBN-13(EAN): 9781119985990
Издательство: Wiley
Рейтинг:
Цена: 16790.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Zeroing Neural Networks Describes the theoretical and practical aspects of finite-time ZNN methods for solving an array of computational problems Zeroing Neural Networks (ZNN) have become essential tools for solving discretized sensor-driven time-varying matrix problems in engineering, control theory, and on-chip applications for robots. Building on the original ZNN model, finite-time zeroing neural networks (FTZNN) enable efficient, accurate, and predictive real-time computations. Setting up discretized FTZNN algorithms for different time-varying matrix problems requires distinct steps.

Zeroing Neural Networks provides in-depth information on the finite-time convergence of ZNN models in solving computational problems. Divided into eight parts, this comprehensive resource covers modeling methods, theoretical analysis, computer simulations, nonlinear activation functions, and more. Each part focuses on a specific type of time-varying computational problem, such as the application of FTZNN to the Lyapunov equation, linear matrix equation, and matrix inversion.

Throughout the book, tables explain the performance of different models, while numerous illustrative examples clarify the advantages of each FTZNN method. In addition, the book: Describes how to design, analyze, and apply FTZNN models for solving computational problems Presents multiple FTZNN models for solving time-varying computational problems Details the noise-tolerance of FTZNN models to maximize the adaptability of FTZNN models to complex environments Includes an introduction, problem description, design scheme, theoretical analysis, illustrative verification, application, and summary in every chapter Zeroing Neural Networks: Finite-time Convergence Design, Analysis and Applications is an essential resource for scientists, researchers, academic lecturers, and postgraduates in the field, as well as a valuable reference for engineers and other practitioners working in neurocomputing and intelligent control.

Neural Network Methods in Natural Language Processing

Автор: Goldberg Yoav
Название: Neural Network Methods in Natural Language Processing
ISBN: 1627052984 ISBN-13(EAN): 9781627052986
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 11504.00 р.
Наличие на складе: Нет в наличии.

Описание: Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries.The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Neural Networks for Modelling and Control of Dynamic Systems / A Practitioner`s Handbook

Автор: Norgaard M., Ravn O., Poulsen N.K., Hansen L.K.
Название: Neural Networks for Modelling and Control of Dynamic Systems / A Practitioner`s Handbook
ISBN: 1852332271 ISBN-13(EAN): 9781852332273
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The technology of neural networks has attracted much attention in recent years. Their ability to learn nonlinear relationships is widely appreciated and is utilized in many different types of applications; modelling of dynamic systems, signal processing, and control system design being some of the most common. The theory of neural computing has matured considerably over the last decade and many problems of neural network design, training and evaluation have been resolved. This book provides a comprehensive introduction to the most popular class of neural network, the multilayer perceptron, and shows how it can be used for system identification and control. It aims to provide the reader with a sufficient theoretical background to understand the characteristics of different methods, to be aware of the pit-falls and to make proper decisions in all situations. The subjects treated include: System identification: multilayer perceptrons; how to conduct informative experiments; model structure selection; training methods; model validation; pruning algorithms. Control: direct inverse, internal model, feedforward, optimal and predictive control; feedback linearization and instantaneous-linearization-based controllers. Case studies: prediction of sunspot activity; modelling of a hydraulic actuator; control of a pneumatic servomechanism; water-level control in a conical tank. The book is very application-oriented and gives detailed and pragmatic recommendations that guide the user through the plethora of methods suggested in the literature. Furthermore, it attempts to introduce sound working procedures that can lead to efficient neural network solutions. This will make the book invaluable to the practitioner and as a textbook in courses with a significant hands-on component.

Data-Driven Computational Neuroscience: Machine Learning and Statistical Models

Автор: Concha Bielza, Pedro Larranaga
Название: Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
ISBN: 110849370X ISBN-13(EAN): 9781108493703
Издательство: Cambridge Academ
Рейтинг:
Цена: 12830.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This modern treatment of real world cases offers neuroscience researchers and graduate students a comprehensive, in-depth guide to statistical and machine learning methods.

Neural Networks Modeling And Control

Автор: Rios, Jorge D.
Название: Neural Networks Modeling And Control
ISBN: 0128170786 ISBN-13(EAN): 9780128170786
Издательство: Elsevier Science
Рейтинг:
Цена: 19875.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control.

As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends.

Fuzzy Systems To Quantum Mechanics

Автор: Li Hong-xing
Название: Fuzzy Systems To Quantum Mechanics
ISBN: 9811211183 ISBN-13(EAN): 9789811211188
Издательство: World Scientific Publishing
Рейтинг:
Цена: 22968.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This unique compendium represents important action of fuzzy systems to quantum mechanics. From fuzzy sets to fuzzy systems, it also gives clear descriptions on the development on fuzzy logic, where the most important result is the probability presentation of fuzzy systems.

The important conclusions on fuzzy systems are used in the study of quantum mechanics, which is a very new idea. Eight important conclusions are obtained. The author has proved that mass-point motions in classical mechanics must have waves, which means that any mass-point motion in classical mechanics has wave mass-point dualism as well as any microscopic particle motion must have wave-particle dualism. Based on this conclusion, it has been proven that classical mechanics and quantum mechanics are unified.

Soft Computing with NeuroFuzzy Systems

Автор: Jovan Pehcevski
Название: Soft Computing with NeuroFuzzy Systems
ISBN: 1774077795 ISBN-13(EAN): 9781774077795
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 23423.00 р.
Наличие на складе: Нет в наличии.

Описание: Covers different topics from soft computing and neuro-fuzzy systems, including intelligent neuro-fuzzy models, adaptive neuro-fuzzy systems, neuro-fuzzy inference systems, and neuro-fuzzy control.

Recurrent Neural Networks for Short-Term Load Forecasting

Автор: Filippo Maria Bianchi; Enrico Maiorino; Michael C.
Название: Recurrent Neural Networks for Short-Term Load Forecasting
ISBN: 3319703374 ISBN-13(EAN): 9783319703374
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The key component in forecasting demand and consumption of resources in a supply network is an accurate prediction of real-valued time series.

Recurrent Neural Networks with Python Quick Start Guide

Автор: Kostadinov Simeon
Название: Recurrent Neural Networks with Python Quick Start Guide
ISBN: 1789132339 ISBN-13(EAN): 9781789132335
Издательство: Неизвестно
Рейтинг:
Цена: 6068.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Developers struggle to find an easy to follow learning resource for implementing Recurrent Neural Network(RNN) models. RNNs are the state-of-the-art model in deep learning for dealing with sequential data. From language translation to generating captions for an image, RNNs are used to continuously improve the results. This book will teach you ...

Theory, Concepts and Methods of Recurrent Neural Networks and Soft Computing

Автор: Rogerson Jeremy
Название: Theory, Concepts and Methods of Recurrent Neural Networks and Soft Computing
ISBN: 1632404931 ISBN-13(EAN): 9781632404930
Издательство: Неизвестно
Цена: 26659.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Supervised Sequence Labelling with Recurrent Neural Networks

Автор: Alex Graves
Название: Supervised Sequence Labelling with Recurrent Neural Networks
ISBN: 3642432182 ISBN-13(EAN): 9783642432187
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a complete framework for classifying and transcribing sequential data with recurrent neural networks. It uses state-of-the-art results in speech and handwriting recognition to show the framework in action.

Recurrent Neural Networks for Prediction

Автор: Danilo P. Mandic, Jonathon A. Chambers
Название: Recurrent Neural Networks for Prediction
ISBN: 0471495174 ISBN-13(EAN): 9780471495178
Издательство: Wiley
Рейтинг:
Цена: 27712.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Neural networks consist of interconnected groups of neurons which function as processing units and aim to reconstruct the operation of the human brain.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия