Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Introduction to Transformers for NLP, Jain


Варианты приобретения
Цена: 4611.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Jain
Название:  Introduction to Transformers for NLP
ISBN: 9781484288436
Издательство: Springer
Классификация:




ISBN-10: 1484288432
Обложка/Формат: Soft cover
Страницы: 165
Вес: 0.29 кг.
Дата издания: 04.11.2022
Язык: English
Издание: 1st ed.
Иллюстрации: 80 illustrations, black and white; xi, 165 p. 80 illus.
Размер: 155 x 235 x 12
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: With the hugging face library and models to solve problems
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Get a hands-on introduction to Transformer architecture using the Hugging Face library. This book explains how Transformers are changing the AI domain, particularly in the area of natural language processing. This book covers Transformer architecture and its relevance in natural language processing (NLP). It starts with an introduction to NLP and a progression of language models from n-grams to a Transformer-based architecture. Next, it offers some basic Transformers examples using the Google colab engine. Then, it introduces the Hugging Face ecosystem and the different libraries and models provided by it. Moving forward, it explains language models such as Google BERT with some examples before providing a deep dive into Hugging Face API using different language models to address tasks such as sentence classification, sentiment analysis, summarization, and text generation. After completing Introduction to Transformers for NLP, you will understand Transformer concepts and be able to solve problems using the Hugging Face library. What You Will Learn * Understand language models and their importance in NLP and NLU (Natural Language Understanding) * Master Transformer architecture through practical examples * Use the Hugging Face library in Transformer-based language models * Create a simple code generator in Python based on Transformer architecture Who This Book Is For Data Scientists and software developers interested in developing their skills in NLP and NLU (Natural Language Understanding)
Дополнительное описание: Chapter 1: Introduction to Language Models.- Chapter 2: Introduction to Transformers.- Chapter 3: BERT.- Chapter 4: Hugging Face.- Chapter 5: Tasks Using the Huggingface Library.- Chapter 6: Fine-Tuning Pre-Trained Models.- Appendix A: Vision Transformers



Pretrained Transformers for Text Ranking

Автор: Lin
Название: Pretrained Transformers for Text Ranking
ISBN: 3031010531 ISBN-13(EAN): 9783031010538
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing (NLP) applications.This book provides an overview of text ranking with neural network architectures known as transformers, of which BERT (Bidirectional Encoder Representations from Transformers) is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in NLP, information retrieval (IR), and beyond. This book provides a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. It covers a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. Two themes pervade the book: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this book also attempts to prognosticate where the field is heading.

Transformers for machine learning :

Автор: Kamath, Uday,
Название: Transformers for machine learning :
ISBN: 0367767341 ISBN-13(EAN): 9780367767341
Издательство: Taylor&Francis
Рейтинг:
Цена: 6889.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Transformers are becoming a core part of many neural network architectures, employed in a wide range of applications such as NLP, Speech Recognition, Time Series, and Computer Vision. Transformers have gone through many adaptations and alterations, resulting in newer techniques and methods. This is the first comprehensive book on transformers.

Condition Monitoring and Assessment of Power Transformers Using Computational Intelligence

Автор: W.H. Tang; Q.H. Wu
Название: Condition Monitoring and Assessment of Power Transformers Using Computational Intelligence
ISBN: 1447126262 ISBN-13(EAN): 9781447126263
Издательство: Springer
Рейтинг:
Цена: 19589.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume provides a thorough introduction to transformer condition monitoring for the assessment of power transformers. The fundamental theories are discussed, in addition to the most up-to-date research in this rapidly changing field.

Natural language processing with transformers, revised edition

Автор: Tunstall, Lewis Von Werra, Leandro Wolf, Thomas
Название: Natural language processing with transformers, revised edition
ISBN: 1098136799 ISBN-13(EAN): 9781098136796
Издательство: Wiley
Рейтинг:
Цена: 7602.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: If you`re a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия