Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Time Series Algorithms Recipes, Kulkarni


Варианты приобретения
Цена: 4890.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kulkarni
Название:  Time Series Algorithms Recipes
ISBN: 9781484289778
Издательство: Springer
Классификация:


ISBN-10: 1484289773
Обложка/Формат: Soft cover
Страницы: 174
Вес: 0.30 кг.
Дата издания: 07.01.2023
Язык: English
Издание: 1st ed.
Иллюстрации: 97 illustrations, black and white; xvi, 174 p. 97 illus.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Implement machine learning and deep learning techniques with python
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, youll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. Youll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will Learn * Implement various techniques in time series analysis using Python. * Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting * Understand univariate and multivariate modeling for time series forecasting * Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is For Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Дополнительное описание: Chapter 1: Getting Started with Time Series.- Chapter 2: Statistical Univariate Modelling.- Chapter 3: Statistical Multivariate Modelling.- Chapter 4: Machine Learning Regression-Based Forecasting.- Chapter 5: Forecasting Using Deep Learning.



Computer Age Statistical Inference, Student Edition

Автор: Bradley Efron , Trevor Hastie
Название: Computer Age Statistical Inference, Student Edition
ISBN: 1108823416 ISBN-13(EAN): 9781108823418
Издательство: Cambridge Academ
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications

Автор: Belyadi Hoss, Haghighat Alireza
Название: Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications
ISBN: 0128219297 ISBN-13(EAN): 9780128219294
Издательство: Elsevier Science
Рейтинг:
Цена: 19370.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.

Noise Filtering for Big Data Analytics

Автор: Koushik Ghosh, Souvik Bhattacharyya
Название: Noise Filtering for Big Data Analytics
ISBN: 3110697092 ISBN-13(EAN): 9783110697094
Издательство: Walter de Gruyter
Рейтинг:
Цена: 26024.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains how to perform data de-noising, in large scale, with a satisfactory level of accuracy. Three main issues are considered. Firstly, how to eliminate the error propagation from one stage to next stages while developing a filtered model.

Secondly, how to maintain the positional importance of data whilst purifying it. Finally, preservation of memory in the data is crucial to extract smart data from noisy big data. If, after the application of any form of smoothing or filtering, the memory of the corresponding data changes heavily, then the final data may lose some important information.

This may lead to wrong or erroneous conclusions. But, when anticipating any loss of information due to smoothing or filtering, one cannot avoid the process of denoising as on the other hand any kind of analysis of big data in the presence of noise can be misleading. So, the entire process demands very careful execution with efficient and smart models in order to effectively deal with it.

Artificial Intelligence for Signal Processing and Wireless Communication

Автор: Abhinav Sharma et al.
Название: Artificial Intelligence for Signal Processing and Wireless Communication
ISBN: 3110738821 ISBN-13(EAN): 9783110738827
Издательство: Walter de Gruyter
Рейтинг:
Цена: 26024.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Without mathematics no science would survive. This especially applies to the engineering sciences which highly depend on the applications of mathematics and mathematical tools such as optimization techniques, finite element methods, differential equations, fluid dynamics, mathematical modelling, and simulation. Neither optimization in engineering, nor the performance of safety-critical system and system security; nor high assurance software architecture and design would be possible without the development of mathematical applications.

De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences (AMEIS) focusses on the latest applications of engineering and information technology that are possible only with the use of mathematical methods. By identifying the gaps in knowledge of engineering applications the AMEIS series fosters the international interchange between the sciences and keeps the reader informed about the latest developments.

Algorithms for Optimization

Автор: Kochenderfer Mykel J., Wheeler Tim A.
Название: Algorithms for Optimization
ISBN: 0262039427 ISBN-13(EAN): 9780262039420
Издательство: MIT Press
Рейтинг:
Цена: 14390.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems.

This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language.

Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Analysis and Identification of Time-Invariant Systems, Time-Varying Systems, and Multi-Delay Systems using Orthogonal Hybrid Functions

Автор: Anish Deb; Srimanti Roychoudhury; Gautam Sarkar
Название: Analysis and Identification of Time-Invariant Systems, Time-Varying Systems, and Multi-Delay Systems using Orthogonal Hybrid Functions
ISBN: 3319266829 ISBN-13(EAN): 9783319266824
Издательство: Springer
Рейтинг:
Цена: 19591.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Non-Sinusoidal Orthogonal Functions in Systems and Control.- Hybrid Function (HF) and Its Properties.- Function Approximation via Hybrid Functions.- Integration and Differentiation Using HF Domain Operational Matrices.- One-Shot Operational Matrices for Integration.- Solution of Linear Differential Equations.- Convolution of Time Functions.- Time Invariant System Analysis: State Space Approach.- Time Varying System Analysis: State Space Approach.- Multi-Delay System Analysis: State Space Approach.- Time Invariant System Analysis: Method of Convolution.- System Identification using State Space Approach: Time Invariant Systems.- System Identification using State Space Approach: Time Varying Systems.- Time Invariant System Identification: via 'Deconvolution'.- System Identification: Parameter Estimation of Transfer Function.

Analysis and Identification of Time-Invariant Systems, Time-Varying Systems, and Multi-Delay Systems Using Orthogonal Hybrid Functions: Theory and Alg

Автор: Deb Anish, Roychoudhury Srimanti, Sarkar Gautam
Название: Analysis and Identification of Time-Invariant Systems, Time-Varying Systems, and Multi-Delay Systems Using Orthogonal Hybrid Functions: Theory and Alg
ISBN: 3319799975 ISBN-13(EAN): 9783319799971
Издательство: Springer
Рейтинг:
Цена: 22451.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Non-Sinusoidal Orthogonal Functions in Systems and Control.- Hybrid Function (HF) and Its Properties.- Function Approximation via Hybrid Functions.- Integration and Differentiation Using HF Domain Operational Matrices.- One-Shot Operational Matrices for Integration.- Solution of Linear Differential Equations.- Convolution of Time Functions.- Time Invariant System Analysis: State Space Approach.- Time Varying System Analysis: State Space Approach.- Multi-Delay System Analysis: State Space Approach.- Time Invariant System Analysis: Method of Convolution.- System Identification using State Space Approach: Time Invariant Systems.- System Identification using State Space Approach: Time Varying Systems.- Time Invariant System Identification: via 'Deconvolution'.- System Identification: Parameter Estimation of Transfer Function.

Web App Development and Real-Time Web Analytics with Python: Develop and Integrate Machine Learning Algorithms into Web Apps

Автор: Nokeri Tshepo Chris
Название: Web App Development and Real-Time Web Analytics with Python: Develop and Integrate Machine Learning Algorithms into Web Apps
ISBN: 1484277821 ISBN-13(EAN): 9781484277829
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Chapter 1: Static 2D and 3D GraphsChapter Goal: This chapter introduces the basics of tabulating data and constructing staticgraphical representations. To begin with, it exhibits an approach of extracting and tabulating data by implementing the pandas and sqlalchemy library. Subsequently, it reveals a prevalent 2D and 3D charting recognized as Matplotlib, then exhibits a technique of constructing basic charts (i.e. box-whisker plot, histogram, line plot, and scatter plot).● Tabulating Data● 2D Chartingo Box-whisker-ploto Histogramo Line ploto Scatter ploto Density Plot● 3D Charting● Conclusion
Chapter 2: Interactive ChartingChapter Goal: This chapter introduces an approach for constructing interactive charts byimplementing the most prevalent library, recognized as Plotly.● Plotly● 2D Chartingo Box-whisker-ploto Histogramo Line ploto Scatter ploto Density Ploto Bar Charto Pie Charto Sunburst● 3D Charting● Conclusion
Chapter 3: Containing functionality in Interactive GraphsChapter Goal: This chapter extends to the preceding chapter. It introduces an approach toupdating interactive graphs to improve user experience. For instance, you will learn how to add buttons and range sliders, among other functionalities. Besides that, it exhibits an approach for integrating innumerable graphs into one graph with some functionality.● Updating Graph Layout● Updating Plotly Axes● Including Range Slider● Including Buttons to a Graph● Styling Interactive Graphs● Updating Plotly X-Axis● Color Sequencing● Subplots● Conclusions
Chapter 4: Essentials of HTMLChapter Goal: This chapter introduces the most prevalent markup language for developingwebsites. It acquaints you with the essentials of designing websites. Besides that, it contains a richset of code and examples to support you in getting started with coding using HTML.● The Communication between a Web Browser and Web Server● Domain Hostingo Shared Hostingo Managed Hosting● HyperText Markup Languageo HTML Elements▪ Headings▪ Paragraphs▪ Div▪ Span▪ Buttons▪ Text Box▪ Input▪ File Upload▪ Label▪ Form▪ Meta Tag● Practical Example● Conclusion
Chapter 5: Python Web Frameworks and ApplicationsChapter Goal: The preceding chapter acquainted you with interactive visualization using Plotly. This chapter introduces key Python web frameworks (i.e., flask and dash) and how they differ.Besides that, it provides practical examples and helps you get started with Python web development.● Web Frameworks● Web Applications● Flasko WSGIo Werkzeugo Jinjao Installing Flasko Initializing a Flask Web Applicationo Flask Application Codeo Deploy a Flask Web Application● Dasho Installing Dash Dependencieso Initializing a Dash Web Applicationo Dash Application Codeo Deploy a Dash Web Application● Jupyter Dash● Conclusion
Chapter 6: Dash Bootstrap ComponentsChapter Goal: This chapter covers dash_bootstrap_component. It is a Python library from the Plotly family, which enables us to have key bootstrap func

Artificial Intelligence in a Throughput Model

Автор: Rodgers, Waymond
Название: Artificial Intelligence in a Throughput Model
ISBN: 0367217813 ISBN-13(EAN): 9780367217815
Издательство: Taylor&Francis
Рейтинг:
Цена: 26796.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides an overview of the existing biometric technologies, decision-making algorithms and the growth opportunity in biometrics. The book proposes a throughput model, which draws on computer science, economics and psychology to model perceptual, informational sources, judgmental processes and decision choice algorithms.

Machine Learning for Cybersecurity Cookbook

Автор: Tsukerman Emmanuel
Название: Machine Learning for Cybersecurity Cookbook
ISBN: 1789614678 ISBN-13(EAN): 9781789614671
Издательство: Неизвестно
Рейтинг:
Цена: 9010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book helps data scientists and cybersecurity experts on implementing the latest AI techniques in cybersecurity. Concrete and clear steps for implementing ML security systems are provided, saving you months in research and development. By the end of this book, you will be able to build defensive systems to curb cybersecurity threats.

Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch

Автор: Auffarth Ben
Название: Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch
ISBN: 1789133963 ISBN-13(EAN): 9781789133967
Издательство: Неизвестно
Рейтинг:
Цена: 8091.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: If you are looking to build next-generation AI solutions for work or even for your pet projects, you`ll find this cookbook useful. With the help of easy-to-follow recipes, this book will take you through the advanced AI and machine learning approaches and algorithms that are required to build smart models for problem-solving.

Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics

Автор: Sujatha R., Aarthy S. L., Vettriselvan R.
Название: Integrating Deep Learning Algorithms to Overcome Challenges in Big Data Analytics
ISBN: 0367466635 ISBN-13(EAN): 9780367466633
Издательство: Taylor&Francis
Рейтинг:
Цена: 17609.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Data science revolves around two giants, which are big data analytics and deep learning. It is becoming challenging to handle and retrieve useful information due to how fast data is expanding. This book presents the technologies and tools to simplify and streamline the formation of big data along with deep learning systems.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия