Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Statistical Methods for Annotation Analysis, Paun


Варианты приобретения
Цена: 9083.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Paun
Название:  Statistical Methods for Annotation Analysis
ISBN: 9783031037535
Издательство: Springer
Классификация:


ISBN-10: 3031037537
Обложка/Формат: Soft cover
Страницы: 197
Вес: 0.42 кг.
Дата издания: 27.01.2022
Серия: Synthesis Lectures on Human Language Technologies
Язык: English
Иллюстрации: XIX, 197 p.
Размер: 188 x 236 x 15
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: The focus of this book is primarily on Natural Language Processing, the area of AI devoted to the development of models of language interpretation and production, but many if not most of the methods discussed here are also applicable to other areas of AI, or indeed, to other areas of Data Science.


Computational Methods for Corpus Annotation and Analysis

Автор: Xiaofei Lu
Название: Computational Methods for Corpus Annotation and Analysis
ISBN: 9401786445 ISBN-13(EAN): 9789401786447
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews computational tools for lexical, syntactic, semantic, pragmatic and discourse analysis, with instructions on how to obtain, install and use each tool. Covers studies using Natural Language Processing, and offers ideas for better integration.

Computational Methods for Corpus Annotation and Analysis

Автор: Xiaofei Lu
Название: Computational Methods for Corpus Annotation and Analysis
ISBN: 9402407804 ISBN-13(EAN): 9789402407808
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews computational tools for lexical, syntactic, semantic, pragmatic and discourse analysis, with instructions on how to obtain, install and use each tool. Covers studies using Natural Language Processing, and offers ideas for better integration.

Collaborative Annotation for Reliable Natural Language Proce

Автор: Fort Karлn
Название: Collaborative Annotation for Reliable Natural Language Proce
ISBN: 1848219040 ISBN-13(EAN): 9781848219045
Издательство: Wiley
Рейтинг:
Цена: 22010.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a unique opportunity for constructing a consistent image of collaborative manual annotation for Natural Language Processing (NLP).

Language Corpora Annotation and Processing

Автор: Dash
Название: Language Corpora Annotation and Processing
ISBN: 9811629625 ISBN-13(EAN): 9789811629624
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses the research, analysis, and description of the methods and processes that are used in the annotation and processing of language corpora in advanced, semi-advanced, and non-advanced languages.

Language Corpora Annotation and Processing

Автор: Dash Niladri Sekhar
Название: Language Corpora Annotation and Processing
ISBN: 9811629595 ISBN-13(EAN): 9789811629594
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book addresses the research, analysis, and description of the methods and processes that are used in the annotation and processing of language corpora in advanced, semi-advanced, and non-advanced languages.

Handbook of Linguistic Annotation

Автор: Nancy Ide; James Pustejovsky
Название: Handbook of Linguistic Annotation
ISBN: 9402414266 ISBN-13(EAN): 9789402414264
Издательство: Springer
Рейтинг:
Цена: 55901.00 р.
Наличие на складе: Нет в наличии.

Описание: Part one of this book covers all phases of the linguistic annotation process, from annotation scheme design and choice of representation format through both the manual and automatic annotation process, evaluation, and iterative improvement of annotation accuracy.

Knowledge Annotation: Making Implicit Knowledge Explicit

Автор: Alexiei Dingli
Название: Knowledge Annotation: Making Implicit Knowledge Explicit
ISBN: 3642268196 ISBN-13(EAN): 9783642268199
Издательство: Springer
Рейтинг:
Цена: 15672.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book defines modern annotation, and analyzes its significance for future evolutions of the web. The authors examine the use of Artificial Intelligence and redundance in annotation tasks, and predict the future form and function of annotation.

Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis

Автор: Danail Stoyanov; Zeike Taylor; Simone Balocco; Rap
Название: Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
ISBN: 3030013634 ISBN-13(EAN): 9783030013639
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed joint proceedings of the 7th Joint International Workshop on Computing and Visualization for Intravascular Imaging and Computer Assisted Stenting, CVII-STENT 2018, and the Third International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2018, held in conjunction with the 21th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2018, in Granada, Spain, in September 2018. The 9 full papers presented at CVII-STENT 2017 and the 12 full papers presented at LABELS 2017 were carefully reviewed and selected. The CVII-STENT papers feature the state of the art in imaging, treatment, and computer-assisted intervention in the field of endovascular interventions. The LABELS papers present a variety of approaches for dealing with few labels, from transfer learning to crowdsourcing.

Provenance and Annotation of Data and Processes

Автор: Khalid Belhajjame; Ashish Gehani; Pinar Alper
Название: Provenance and Annotation of Data and Processes
ISBN: 3319983784 ISBN-13(EAN): 9783319983783
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 7th International Provenance and Annotation Workshop, IPAW 2018, held in London, UK, in July 2018.

The 12 revised full papers, 19 poster papers, and 2 demonstration papers presented were carefully reviewed and selected from 50 submissions. The papers feature a variety of provenance-related topics ranging from the capture and inference of provenance to its use and application.They are organized in topical sections on reproducibility; modeling, simulating and capturing provenance; PROV extensions; scientific workflows; applications; and system demonstrations.
Annotation-Based Semantics for Space and Time in Language

Автор: Kiyong Lee
Название: Annotation-Based Semantics for Space and Time in Language
ISBN: 1108839592 ISBN-13(EAN): 9781108839594
Издательство: Cambridge Academ
Рейтинг:
Цена: 20592.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Space and time representation in language is important in linguistics and cognitive science research, as well as artificial intelligence applications like conversational robots and navigation systems. This book is the first for linguists and computer scientists that shows how to do model-theoretic semantics for temporal or spatial information in natural language, based on annotation structures. The book covers the entire cycle of developing a specification for annotation and the implementation of the model over the appropriate corpus for linguistic annotation. Its representation language is a type-theoretic, first-order logic in shallow semantics. Each interpretation model is delimited by a set of definitions of logical predicates used in semantic representations (e.g., past) or measuring expressions (e.g., counts or k). The counting function is then defined as a set and its cardinality, involving a universal quantification in a model. This definition then delineates a set of admissible models for interpretation.

Provenance and Annotation of Data and Processes

Автор: Bertram Lud?scher; Beth Plale
Название: Provenance and Annotation of Data and Processes
ISBN: 3319164619 ISBN-13(EAN): 9783319164618
Издательство: Springer
Рейтинг:
Цена: 7826.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the revised selected papers of the 5th International Provenance and Annotation Workshop, IPAW 2014, held in Cologne, Germany in June 2014. The 14 long papers, 20 short papers and 4 extended abstracts presented were carefully reviewed and selected from 53 submissions.

Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, IMIMIC 2020, Second International Workshop,

Автор: Cardoso Jaime, Van Nguyen Hien, Heller Nicholas
Название: Interpretable and Annotation-Efficient Learning for Medical Image Computing: Third International Workshop, IMIMIC 2020, Second International Workshop,
ISBN: 3030611655 ISBN-13(EAN): 9783030611651
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: iMIMIC 2020.- Assessing attribution maps for explaining CNN-based vertebral fracture classifiers.- Projective Latent Interventions for Understanding and Fine-tuning Classifiers.- Interpretable CNN Pruning for Preserving Scale-Covariant Features in Medical Imaging.- Improving the Performance and Explainability of Mammogram Classifiers with Local Annotations.- Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations.- Explainable Disease Classification via weakly-supervised segmentation.- Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns.- Explainability for regression CNN in fetal head circumference estimation from ultrasound images.- MIL3ID 2020.- Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins.- Semi-supervised Instance Segmentation with a Learned Shape Prior.- COMe-SEE: Cross-Modality Semantic Embedding Ensemble for Generalized Zero-Shot Diagnosis of Chest Radiographs.- Semi-supervised Machine Learning with MixMatch and Equivalence Classes.- Non-contrast CT Liver Segmentation using CycleGAN Data Augmentation from Contrast Enhanced CT.- Uncertainty Estimation in Medical Image Localization: Towards Robust Anterior Thalamus Targeting for Deep Brain Stimulation.- A Case Study of Transfer of Lesion-Knowledge.- Transfer Learning With Joint Optimization for Label-Efficient Medical Image Anomaly Detection.- Unsupervised Wasserstein Distance Guided Domain Adaptation for 3D Multi-Domain Liver Segmentation.- HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification.- Semi-supervised classification of chest radiographs.- LABELS 2020.- Risk of training diagnostic algorithms on data with demographic bias.- Semi-Weakly Supervised Learning for Prostate Cancer Image Classification with Teacher-Student Deep Convolutional Networks.- Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels.- EasierPath: An Open-source Tool for Human-in-the-loop Deep Learning of Renal Pathology.- Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection.- Labeling of Multilingual Breast MRI Reports.- Predicting Scores of Medical Imaging Segmentation Methods with Meta-Learning.- Labelling imaging datasets on the basis of neuroradiology reports: a validation study.- Semi-Supervised Learning for Instrument Detection with a Class Imbalanced Dataset.- Paying Per-label Attention for Multi-label Extraction from Radiology Reports.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия