Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Machine Learning Algorithms, Li


Варианты приобретения
Цена: 19564.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Li
Название:  Machine Learning Algorithms
ISBN: 9783031163746
Издательство: Springer
Классификация:



ISBN-10: 3031163745
Обложка/Формат: Hardback
Страницы: 104
Вес: 0.34 кг.
Дата издания: 30.11.2022
Серия: Wireless Networks
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 6 tables, color; 22 illustrations, color; 1 illustrations, black and white; ix, 104 p. 23 illus., 22 illus. in color.
Размер: 163 x 241 x 14
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: Adversarial robustness in signal processing
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book demonstrates the optimal adversarial attacks against several important signal processing algorithms. Through presenting the optimal attacks in wireless sensor networks, array signal processing, principal component analysis, etc, the authors reveal the robustness of the signal processing algorithms against adversarial attacks. Since data quality is crucial in signal processing, the adversary that can poison the data will be a significant threat to signal processing. Therefore, it is necessary and urgent to investigate the behavior of machine learning algorithms in signal processing under adversarial attacks. The authors in this book mainly examine the adversarial robustness of three commonly used machine learning algorithms in signal processing respectively: linear regression, LASSO-based feature selection, and principal component analysis (PCA). As to linear regression, the authors derive the optimal poisoning data sample and the optimal feature modifications, and also demonstrate the effectiveness of the attack against a wireless distributed learning system. The authors further extend the linear regression to LASSO-based feature selection and study the best strategy to mislead the learning system to select the wrong features. The authors find the optimal attack strategy by solving a bi-level optimization problem and also illustrate how this attack influences array signal processing and weather data analysis. In the end, the authors consider the adversarial robustness of the subspace learning problem. The authors examine the optimal modification strategy under the energy constraints to delude the PCA-based subspace learning algorithm. This book targets researchers working in machine learning, electronic information, and information theory as well as advanced-level students studying these subjects. R&D engineers who are working in machine learning, adversarial machine learning, robust machine learning, and technical consultants working on the security and robustness of machine learning are likely to purchase this book as a reference guide.
Дополнительное описание: Chapter. 1. Introduction.- Chapter. 2. Optimal Feature Manipulation Attacks Against Linear Regression.- Chapter. 3. On the Adversarial Robustness of LASSO Based Feature Selection.- Chapter. 4. On the Adversarial Robustness of Subspace Learning.- Chapter.



Introduction to Algorithms 4E

Автор: Cormen, Thomas H.
Название: Introduction to Algorithms 4E
ISBN: 026204630X ISBN-13(EAN): 9780262046305
Издательство: MIT Press
Рейтинг:
Цена: 25394.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive update of a widely used textbook, with new material on matchings in bipartite graphs, online algorithms, machine learning, and other topics.

Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. It covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Since the publication of the first edition, Introduction to Algorithms has become a widely used text in universities worldwide as well as the standard reference for professionals. This fourth edition has been updated throughout, with new chapters on matchings in bipartite graphs, online algorithms, and machine learning, and new material on such topics as solving recurrence equations, hash tables, potential functions, and suffix arrays.

Each chapter is relatively self-contained, presenting an algorithm, a design technique, an application area, or a related topic, and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The fourth edition has 140 new exercises and 22 new problems, and color has been added to improve visual presentations. The writing has been revised throughout, and made clearer, more personal, and gender neutral. The book's website offers supplemental material.

Computer Age Statistical Inference, Student Edition

Автор: Bradley Efron , Trevor Hastie
Название: Computer Age Statistical Inference, Student Edition
ISBN: 1108823416 ISBN-13(EAN): 9781108823418
Издательство: Cambridge Academ
Рейтинг:
Цена: 5069.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.

Deep Learning

Автор: Goodfellow Ian, Bengio Yoshua, Courville Aaron
Название: Deep Learning
ISBN: 0262035618 ISBN-13(EAN): 9780262035613
Издательство: MIT Press
Рейтинг:
Цена: 13543.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject."
-- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.

Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications

Автор: Belyadi Hoss, Haghighat Alireza
Название: Machine Learning Guide for Oil and Gas Using Python: A Step-By-Step Breakdown with Data, Algorithms, Codes, and Applications
ISBN: 0128219297 ISBN-13(EAN): 9780128219294
Издательство: Elsevier Science
Рейтинг:
Цена: 19370.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine Learning Guide for Oil and Gas Using Python: A Step-by-Step Breakdown with Data, Algorithms, Codes, and Applications delivers a critical training and resource tool to help engineers understand machine learning theory and practice, specifically referencing use cases in oil and gas. The reference moves from explaining how Python works to step-by-step examples of utilization in various oil and gas scenarios, such as well testing, shale reservoirs and production optimization. Petroleum engineers are quickly applying machine learning techniques to their data challenges, but there is a lack of references beyond the math or heavy theory of machine learning. Machine Learning Guide for Oil and Gas Using Python details the open-source tool Python by explaining how it works at an introductory level then bridging into how to apply the algorithms into different oil and gas scenarios. While similar resources are often too mathematical, this book balances theory with applications, including use cases that help solve different oil and gas data challenges.

Introduction to algorithms  3 ed.

Автор: Cormen, Thomas H., E
Название: Introduction to algorithms 3 ed.
ISBN: 0262033844 ISBN-13(EAN): 9780262033848
Издательство: MIT Press
Рейтинг:
Цена: 27588.00 р.
Наличие на складе: Нет в наличии.

Описание: A new edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-base flow.

Computational Intelligence for Machine Learning and Healthcare Informatics

Автор: Rajshree Srivastava, Pradeep Kumar Mallick, Siddha
Название: Computational Intelligence for Machine Learning and Healthcare Informatics
ISBN: 3110647826 ISBN-13(EAN): 9783110647822
Издательство: Walter de Gruyter
Цена: 20446.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: THE SERIES: INTELLIGENT BIOMEDICAL DATA ANALYSIS
By focusing on the methods and tools for intelligent data analysis, this series aims to narrow the increasing gap between data gathering and data comprehension. Emphasis is also given to the problems resulting from automated data collection in modern hospitals, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring. In medicine, overcoming this gap is crucial since medical decision making needs to be supported by arguments based on existing medical knowledge as well as information, regularities and trends extracted from big data sets.

Machine Learning for Computer and Cyber Security

Автор: Brij B. Gupta, Quan Z. Sheng
Название: Machine Learning for Computer and Cyber Security
ISBN: 1138587303 ISBN-13(EAN): 9781138587304
Издательство: Taylor&Francis
Рейтинг:
Цена: 26796.00 р.
Наличие на складе: Нет в наличии.

Описание: This comprehensive book offers valuable insights while using a wealth of examples and illustrations to effectively demonstrate the principles, algorithms, challenges and applications of machine learning and data mining for computer and cyber security.

Sparse Modeling

Автор: Rish, Irina
Название: Sparse Modeling
ISBN: 1439828695 ISBN-13(EAN): 9781439828694
Издательство: Taylor&Francis
Рейтинг:
Цена: 11482.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatically improve the cost efficiency of signal processing.

Sparse Modeling: Theory, Algorithms, and Applications provides an introduction to the growing field of sparse modeling, including application examples, problem formulations that yield sparse solutions, algorithms for finding such solutions, and recent theoretical results on sparse recovery. The book gets you up to speed on the latest sparsity-related developments and will motivate you to continue learning about the field.

The authors first present motivating examples and a high-level survey of key recent developments in sparse modeling. The book then describes optimization problems involving commonly used sparsity-enforcing tools, presents essential theoretical results, and discusses several state-of-the-art algorithms for finding sparse solutions.

The authors go on to address a variety of sparse recovery problems that extend the basic formulation to more sophisticated forms of structured sparsity and to different loss functions. They also examine a particular class of sparse graphical models and cover dictionary learning and sparse matrix factorizations.

Bandit Algorithms

Автор: Tor Lattimore, Csaba Szepesvari
Название: Bandit Algorithms
ISBN: 1108486827 ISBN-13(EAN): 9781108486828
Издательство: Cambridge Academ
Рейтинг:
Цена: 6970.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks.

Beyond the Worst-Case Analysis of Algorithms

Автор: Tim Roughgarden
Название: Beyond the Worst-Case Analysis of Algorithms
ISBN: 1108494315 ISBN-13(EAN): 9781108494311
Издательство: Cambridge Academ
Рейтинг:
Цена: 9187.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Understanding when and why algorithms work is a fundamental challenge. For problems ranging from clustering to linear programming to neural networks there are significant gaps between empirical performance and prediction based on traditional worst-case analysis. The book introduces exciting new methods for assessing algorithm performance.

Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications

Автор: Srinivasa K. G., Siddesh G. M., Manisekhar S. R.
Название: Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications
ISBN: 9811524440 ISBN-13(EAN): 9789811524448
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics.

Convex Optimization: Algorithms and Complexity

Автор: Sebastian Bubeck.
Название: Convex Optimization: Algorithms and Complexity
ISBN: 1601988605 ISBN-13(EAN): 9781601988607
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12613.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents the main complexity theorems in convex optimization and their corresponding algorithms. The book begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия