Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Interpretability in Deep Learning, Somani


Варианты приобретения
Цена: 22359.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Somani
Название:  Interpretability in Deep Learning
ISBN: 9783031206382
Издательство: Springer
Классификация:




ISBN-10: 303120638X
Обложка/Формат: Hardback
Страницы: 466
Вес: 0.98 кг.
Дата издания: 01.05.2023
Язык: English
Издание: 1st ed. 2023
Иллюстрации: 25 tables, color; 172 illustrations, color; 4 illustrations, black and white; xx, 466 p. 176 illus., 172 illus. in color.
Размер: 161 x 242 x 34
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book is a comprehensive curation, exposition and illustrative discussion of recent research tools for interpretability of deep learning models, with a focus on neural network architectures. In addition, it includes several case studies from application-oriented articles in the fields of computer vision, optics and machine learning related topic. The book can be used as a monograph on interpretability in deep learning covering the most recent topics as well as a textbook for graduate students. Scientists with research, development and application responsibilities benefit from its systematic exposition.
Дополнительное описание: Chapter 1. Introduction.- Chapter 2. Neural networks for deep learning.- Chapter 3. Knowledge Encoding and Interpretation.- Chapter 4. Interpretation in Specific Deep Learning Architectures.- Chapter 5. Fuzzy Deep Learning.



Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support

Автор: Kenji Suzuki; Mauricio Reyes; Tanveer Syeda-Mahmoo
Название: Interpretability of Machine Intelligence in Medical Image Computing and Multimodal Learning for Clinical Decision Support
ISBN: 3030338495 ISBN-13(EAN): 9783030338497
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Second International Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2019).- Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer's disease classification.- UBS: A Dimension-Agnostic Metric for Concept Vector Interpretability Applied to Radiomics.- Generation of Multimodal Justification Using Visual Word Constraint Model for Explainable Computer-Aided Diagnosis.- Incorporating Task-Specific Structural Knowledge into CNNs for Brain Midline Shift Detection.- Guideline-based Additive Explanation for Computer-Aided Diagnosis of Lung Nodules.- Deep neural network or dermatologist?.- Towards Interpretability of Segmentation Networks by analyzing DeepDreams.- 9th International Workshop on Multimodal Learning for Clinical Decision Support (ML-CDS 2019).- Towards Automatic Diagnosis from Multi-modal Medical Data.- Deep Learning based Multi-Modal Registration for Retinal Imaging.- Automated Enriched Medical Concept Generation for Chest X-ray Images.

Interpretability of Computational Intelligence-Based Regression Models

Автор: Tam?s Kenesei; J?nos Abonyi
Название: Interpretability of Computational Intelligence-Based Regression Models
ISBN: 3319219413 ISBN-13(EAN): 9783319219417
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The key idea of this book is that hinging hyperplanes, neural networks and support vector machines can be transformed into fuzzy models, and interpretability of the resulting rule-based systems can be ensured by special model reduction and visualization techniques.

Interpretability Issues in Fuzzy Modeling

Автор: Jorge Casillas; O. Cord?n; Francisco Herrera Trigu
Название: Interpretability Issues in Fuzzy Modeling
ISBN: 3642057020 ISBN-13(EAN): 9783642057021
Издательство: Springer
Рейтинг:
Цена: 36570.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Fuzzy modeling has become one of the most productive and successful results of fuzzy logic. The research developed in the topic during the last two decades has been mainly focused on exploiting the fuzzy model flexibility to obtain the highest accuracy.

Explainable AI Recipes

Автор: Mishra
Название: Explainable AI Recipes
ISBN: 1484290283 ISBN-13(EAN): 9781484290286
Издательство: Springer
Рейтинг:
Цена: 4890.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution, and activation attribution. After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses. What You Will Learn * Create code snippets and explain machine learning models using Python * Leverage deep learning models using the latest code with agile implementations * Build, train, and explain neural network models designed to scale * Understand the different variants of neural network models Who This Book Is For AI engineers, data scientists, and software developers interested in XAI


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия