Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Janine Bennett; Fabien Vivodtzev; Valerio Pascucci Название: Topological and Statistical Methods for Complex Data ISBN: 3662513706 ISBN-13(EAN): 9783662513705 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book contains papers presented at the Workshop on the Analysis of Large-scale, High-Dimensional, and Multi-Variate Data Using Topology and Statistics, held in Le Barp, France, June 2013.
Автор: Chacon Название: Multivariate Kernel Smoothing And I ISBN: 1498763014 ISBN-13(EAN): 9781498763011 Издательство: Taylor&Francis Рейтинг: Цена: 13779.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Kernel smoothing has greatly evolved since its inception to become an essential methodology in the Data Science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges.
Автор: Cox, D.R. , Wermuth, Nanny Название: Multivariate Dependencies ISBN: 0367401371 ISBN-13(EAN): 9780367401375 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Large observational studies involving research questions that require the measurement of several features on each individual arise in many fields including the social and medical sciences. This book sets out both the general concepts and the more technical statistical issues involved in analysis and interpretation. Numerous illustrative examples are described in outline and four studies are discussed in some detail.
The use of graphical representations of dependencies and independencies among the features under study is stressed, both to incorporate available knowledge at the planning stage of an analysis and to summarize aspects important for interpretation after detailed statistical analysis is complete. This book is aimed at research workers using statistical methods as well as statisticians involved in empirical research.
Автор: Kawaguchi, Atsushi Название: Multivariate Analysis for Neuroimaging Data ISBN: 0367255324 ISBN-13(EAN): 9780367255329 Издательство: Taylor&Francis Рейтинг: Цена: 23734.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book enables us to analyze statistically brain imaging data. It is meant for a wide range of researchers interested in biostatistics, data science, and neuroscience. It is useful to understand the background theory of standard software for neuroimaging data analysis.
Автор: Terdik Gyцrgy Название: Multivariate Statistical Methods: Going Beyond the Linear ISBN: 3030813916 ISBN-13(EAN): 9783030813918 Издательство: Springer Рейтинг: Цена: 15372.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents a general method for deriving higher-order statistics of multivariate distributions with simple algorithms that allow for actual calculations. The main tool used for the definitions is the tensor derivative, leading to several useful expressions concerning Hermite polynomials, moments, cumulants, skewness, and kurtosis.
Автор: Montesinos Lуpez Osval Antonio, Montesinos Lуpez Abelardo, Crossa Josй Название: Multivariate Statistical Machine Learning Methods for Genomic Prediction ISBN: 3030890090 ISBN-13(EAN): 9783030890094 Издательство: Springer Рейтинг: Цена: 5589.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool.
Автор: Montesinos Lуpez Osval Antonio, Montesinos Lуpez Abelardo, Crossa Josй Название: Multivariate Statistical Machine Learning Methods for Genomic Prediction ISBN: 3030890120 ISBN-13(EAN): 9783030890124 Издательство: Springer Рейтинг: Цена: 5589.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool.
Автор: Warton, David I Название: Eco-stats - data analysis in ecology ISBN: 3030884422 ISBN-13(EAN): 9783030884420 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book introduces ecologists to the wonderful world of modern tools for data analysis, especially multivariate analysis. For biologists with relatively little prior knowledge of statistics, it introduces a modern, advanced approach to data analysis in an intuitive and accessible way.
Автор: Marcoulides, George A. Название: Multivariate Statistical Methods ISBN: 0805825711 ISBN-13(EAN): 9780805825718 Издательство: Taylor&Francis Рейтинг: Цена: 13779.00 р. Наличие на складе: Поставка под заказ.
Автор: Marcoulides, George A. Название: Multivariate Statistical Methods ISBN: 080582572X ISBN-13(EAN): 9780805825725 Издательство: Taylor&Francis Рейтинг: Цена: 5664.00 р. Наличие на складе: Поставка под заказ.
Автор: Norou Diawara Название: Modern Statistical Methods for Spatial and Multivariate Data ISBN: 3030114309 ISBN-13(EAN): 9783030114305 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This contributed volume features invited papers on current models and statistical methods for spatial and multivariate data. With a focus on recent advances in statistics, topics include spatio-temporal aspects, classification techniques, the multivariate outcomes with zero and doubly-inflated data, discrete choice modelling, copula distributions, and feasible algorithmic solutions. Special emphasis is placed on applications such as the use of spatial and spatio-temporal models for rainfall in South Carolina and the multivariate sparse areal mixed model for the Census dataset for the state of Iowa. Articles use simulated and aggregated data examples to show the flexibility and wide applications of proposed techniques.
Carefully peer-reviewed and pedagogically presented for a broad readership, this volume is suitable for graduate and postdoctoral students interested in interdisciplinary research. Researchers in applied statistics and sciences will find this book an important resource on the latest developments in the field. In keeping with the STEAM-H series, the editors hope to inspire interdisciplinary understanding and collaboration.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru