Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Latent Factor Analysis for High-dimensional and Sparse Matrices, Yuan


Варианты приобретения
Цена: 6288.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Yuan
Название:  Latent Factor Analysis for High-dimensional and Sparse Matrices
ISBN: 9789811967023
Издательство: Springer
Классификация:



ISBN-10: 9811967024
Обложка/Формат: Soft cover
Страницы: 92
Вес: 0.17 кг.
Дата издания: 30.11.2022
Серия: SpringerBriefs in Computer Science
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 50 tables, color; 1 illustrations, black and white; viii, 92 p. 1 illus.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: A particle swarm optimization-based approach
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question. This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
Дополнительное описание: Chapter 1. Introduction.- Chapter 2. Learning rate-free Latent Factor Analysis via PSO.- Chapter 3. Learning Rate and Regularization Coefficient-free Latent Factor Analysis via PSO.- Chapter 4. Regularization and Momentum Coefficient-free Non-negative Lat



Emerging Research on Applied Fuzzy Sets and Intuitionistic Fuzzy Matrices

Автор: Amal Kumar Adak
Название: Emerging Research on Applied Fuzzy Sets and Intuitionistic Fuzzy Matrices
ISBN: 1522509143 ISBN-13(EAN): 9781522509141
Издательство: Turpin
Рейтинг:
Цена: 29992.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The use of fuzzy logic has become prominent in a variety of fields and applications. By implementing these logic sets, problems and uncertainties are more effectively resolved.Emerging Research on Applied Fuzzy Sets and Intuitionistic Fuzzy Matrices is a pivotal reference source for the latest scholarly perspectives on the interdisciplinary use of fuzzy logic theory, focusing on the application of sets and matrices. Highlighting theoretical framework and empirical research findings, this book is ideally designed for academics, practitioners, upper-level students, and professionals interested in an innovative overview of fuzzy logic sets and matrices.

Latent Variable Analysis and Signal Separation

Автор: Emmanuel Vincent; Arie Yeredor; Zbyn?k Koldovsk?;
Название: Latent Variable Analysis and Signal Separation
ISBN: 3319224816 ISBN-13(EAN): 9783319224817
Издательство: Springer
Рейтинг:
Цена: 8944.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICS 2015, held in Liberec, Czech Republic, in August 2015. Five special topics are addressed: tensor-based methods for blind signal separation;

Robotic Tactile Perception and Understanding

Автор: Huaping Liu; Fuchun Sun
Название: Robotic Tactile Perception and Understanding
ISBN: 981106170X ISBN-13(EAN): 9789811061707
Издательство: Springer
Рейтинг:
Цена: 13275.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques.

Matrices and Matroids for Systems Analysis

Автор: Kazuo Murota
Название: Matrices and Matroids for Systems Analysis
ISBN: 3642039936 ISBN-13(EAN): 9783642039935
Издательство: Springer
Рейтинг:
Цена: 23058.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a unique introduction to matroid theory, emphasizing motivations from matrix theory and applications to systems analysis. It serves also as a comprehensive presentation of the theory and application of mixed matrices.

Ultimate Performance Analysis Tool (uPATO)

Автор: Frutuoso G. M. Silva; Quoc Trong Nguyen; Ac?cio F.
Название: Ultimate Performance Analysis Tool (uPATO)
ISBN: 3319997521 ISBN-13(EAN): 9783319997520
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces the ultimate performance analysis tool (uPATO) as a new software to compute social network metrics in the scope of team sports analysis. The reader will identify the algorithms to test the general properties of the team, the co-dependencies and the centrality levels of players, i.e. to evaluate the individual, sub-group, and team performance analysis. As uPATO tool implements the metrics for all options, namely for unweighted graphs, weighted graphs, unweighted digraphs and weighted digraphs, it is also useful for network analysis into other areas beyond team sports. The book assists the reader to compute the metrics and to use it in different scenarios.

Pairwise Comparison Matrices and their Fuzzy Extension

Автор: Krej??
Название: Pairwise Comparison Matrices and their Fuzzy Extension
ISBN: 3319777149 ISBN-13(EAN): 9783319777146
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers the first comprehensive and critical literature review of fuzzy pairwise comparison methods derived from methods originally developed for crisp pairwise comparison matrices. It proposes new fuzzy extensions of these methods and provides a detailed study of the differences and analogies between all the reviewed methods, as well as a detailed description of their drawbacks, with the help of many numerical examples. In order to prevent the drawbacks related to the reviewed fuzzy pairwise comparison methods, the book introduces constrained fuzzy arithmetic in fuzzy extension of the pairwise comparison methods. It proposes new fuzzy pairwise comparison methods based on constrained fuzzy arithmetic and critically compares them with the reviewed methods. It describes the application of the newly developed methods to incomplete large-dimensional pairwise comparison matrices showcased in a real-life case study. Written for researchers, graduate and PhD students interested in multi-criteria decision making methods based on both crisp and fuzzy pairwise comparison matrices, this self-contained book offers an overview of cutting-edge research and all necessary information to understand the described tools and use them in real-world applications.

Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Автор: Molitierno, Jason J.
Название: Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs
ISBN: 1439863377 ISBN-13(EAN): 9781439863374
Издательство: Taylor&Francis
Рейтинг:
Цена: 29093.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Index Matrices: Towards an Augmented Matrix Calculus

Автор: Krassimir T. Atanassov
Название: Index Matrices: Towards an Augmented Matrix Calculus
ISBN: 3319365045 ISBN-13(EAN): 9783319365046
Издательство: Springer
Рейтинг:
Цена: 13059.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the very concept of an index matrix and its related augmented matrix calculus in a comprehensive form. It mostly illustrates the exposition with examples related to the generalized nets and intuitionistic fuzzy sets which are examples of an extremely wide array of possible application areas.

Decision Making and Optimization

Автор: Martin Gavalec; Jaroslav Ram?k; Karel Zimmermann
Название: Decision Making and Optimization
ISBN: 3319083228 ISBN-13(EAN): 9783319083223
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book is a benefit for graduate and postgraduate students in the areas of operations research, decision theory, optimization theory, linear algebra, interval analysis and fuzzy sets.

Matrices and Simplex Algorithms

Автор: Aaart R. Heesterman
Название: Matrices and Simplex Algorithms
ISBN: 9400979436 ISBN-13(EAN): 9789400979437
Издательство: Springer
Рейтинг:
Цена: 11173.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a textbook devoted to mathematical programming algorithms and the mathematics needed to understand such algorithms. It is a textbook as well a~ in parts, a contribution to new knowledge. Part II is mainly devoted to linear programming. viii INTRODUCTION Parts III and IV are concerned with nonlinear programming.

Pairwise Comparison Matrices and their Fuzzy Extension

Автор: Jana Krej??
Название: Pairwise Comparison Matrices and their Fuzzy Extension
ISBN: 3030085198 ISBN-13(EAN): 9783030085193
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers the first comprehensive and critical literature review of fuzzy pairwise comparison methods derived from methods originally developed for crisp pairwise comparison matrices. It proposes new fuzzy extensions of these methods and provides a detailed study of the differences and analogies between all the reviewed methods, as well as a detailed description of their drawbacks, with the help of many numerical examples. In order to prevent the drawbacks related to the reviewed fuzzy pairwise comparison methods, the book introduces constrained fuzzy arithmetic in fuzzy extension of the pairwise comparison methods. It proposes new fuzzy pairwise comparison methods based on constrained fuzzy arithmetic and critically compares them with the reviewed methods. It describes the application of the newly developed methods to incomplete large-dimensional pairwise comparison matrices showcased in a real-life case study. Written for researchers, graduate and PhD students interested in multi-criteria decision making methods based on both crisp and fuzzy pairwise comparison matrices, this self-contained book offers an overview of cutting-edge research and all necessary information to understand the described tools and use them in real-world applications.

Robust Latent Feature Learning for Incomplete Big Data

Автор: Wu
Название: Robust Latent Feature Learning for Incomplete Big Data
ISBN: 9811981396 ISBN-13(EAN): 9789811981395
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty. In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learning using L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия