Описание: Partial differential equations are one of the most used widely forms of mathematics in science and engineering. Two fractional PDEs can be considered, fractional in time, and fractional in space. These two volumes are directed to the development and use of SFPDEs, with the discussion divided into an introduction to Algorithms and Computer Coding in R and applications from classical integer PDEs.
Автор: Constantin Milici; Gheorghe Dr?g?nescu; J. Tenreir Название: Introduction to Fractional Differential Equations ISBN: 303013153X ISBN-13(EAN): 9783030131531 Издательство: Springer Рейтинг: Цена: 16070.00 р. Наличие на складе: Поставка под заказ.
Описание: This book introduces a series of problems and methods insufficiently discussed in the field of Fractional Calculus – a major, emerging tool relevant to all areas of scientific inquiry. The authors present examples based on symbolic computation, written in Maple and Mathematica, and address both mathematical and computational areas in the context of mathematical modeling and the generalization of classical integer-order methods. Distinct from most books, the present volume fills the gap between mathematics and computer fields, and the transition from integer- to fractional-order methods.
Автор: Bashir Ahmad, Johnny L Henderson, Rodica Luca Название: Boundary Value Problems For Fractional Differential Equations And Systems ISBN: 9811224455 ISBN-13(EAN): 9789811224454 Издательство: World Scientific Publishing Рейтинг: Цена: 19008.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This book is devoted to the study of existence of solutions or positive solutions for various classes of Riemann-Liouville and Caputo fractional differential equations, and systems of fractional differential equations subject to nonlocal boundary conditions. The monograph draws together many of the authors' results, that have been obtained and highly cited in the literature in the last four years.
In each chapter, various examples are presented which support the main results. The methods used in the proof of these theorems include results from the fixed point theory and fixed point index theory. This volume can serve as a good resource for mathematical and scientific researchers, and for graduate students in mathematics and science interested in the existence of solutions for fractional differential equations and systems.
This book deals with the existence and stability of solutions to initial and boundary value problems for functional differential and integral equations and inclusions involving the Riemann-Liouville, Caputo, and Hadamard fractional derivatives and integrals. A wide variety of topics is covered in a mathematically rigorous manner making this work a valuable source of information for graduate students and researchers working with problems in fractional calculus.
Contents Preliminary Background Nonlinear Implicit Fractional Differential Equations Impulsive Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Nonlinear Implicit Fractional Differential Equations Boundary Value Problems for Impulsive NIFDE Integrable Solutions for Implicit Fractional Differential Equations Partial Hadamard Fractional Integral Equations and Inclusions Stability Results for Partial Hadamard Fractional Integral Equations and Inclusions Hadamard-Stieltjes Fractional Integral Equations Ulam Stabilities for Random Hadamard Fractional Integral Equations
Автор: R. M. M. Mattheij Название: Partial Differential Equations ISBN: 0898715946 ISBN-13(EAN): 9780898715941 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 21318.00 р. Наличие на складе: Нет в наличии.
Описание: Partial differential equations (PDEs) are used to describe a large variety of physical phenomena, from fluid flow to electromagnetic fields, and are indispensable to such disparate fields as aircraft simulation and computer graphics. While most existing texts on PDEs deal with either analytical or numerical aspects of PDEs, this innovative and comprehensive textbook features a unique approach that integrates analysis and numerical solution methods and includes a third component - modeling - to address real-life problems. The authors believe that modeling can be learned only by doing; hence a separate chapter containing 16 user-friendly case studies of elliptic, parabolic, and hyperbolic equations is included and numerous exercises are included in all other chapters.
Автор: Alessandro Carbotti, Serena Dipierro, Enrico Valdinoci Название: Local Density of Solutions to Fractional Equations ISBN: 3110660695 ISBN-13(EAN): 9783110660692 Издательство: Walter de Gruyter Цена: 14495.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob . Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus , second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
Автор: Manuel Duarte Ortigueira, Duarte Valerio Название: Fractional Signals and Systems ISBN: 3110621290 ISBN-13(EAN): 9783110621297 Издательство: Walter de Gruyter Цена: 22305.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
The series is devoted to the publication of high-level monographs which cover progresses in fractional calculus research in mathematics and applications in physics, mechanics, engineering and biology etc. Methodological aspects e.g., theory, modeling and computational methods are presented from mathematical point of view, and emphases are placed in computer simulation, analysis, design and control of application-oriented issues in various scientific disciplines. It is designed for mathematicians, and researchers using fractional calculus as a tool in the field of physics, mechanics, engineering and biology. Contributions which are interdisciplinary and which stimulate further research at the crossroads of sciences and engineering are particularly welcomed.
Editor-in-chief: Changpin Li, Shanghai University, China
Editorial Board: Virginia Kiryakova, Bulgarian Academy of Sciences, Bulgaria Francesco Mainardi, University of Bologna, Italy Dragan Spasic, University of Novi Sad, Serbia Bruce Ian Henry, University of New South Wales, Australia YangQuan Chen, University of California, Merced, USA
Please submit book proposals to Professor Changpin Li: lcp@shu.edu.cn
Описание: This book provides a thorough conversation on the underpinnings of Covid-19 spread modelling by using stochastics nonlocal differential and integral operators with singular and non-singular kernels.
Автор: Dumitru Baleanu and Antonio Mendes Lopes Название: Handbook of Fractional Calculus with Applications ISBN: 3110570920 ISBN-13(EAN): 9783110570922 Издательство: Walter de Gruyter Рейтинг: Цена: 22439.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This eighth volume collects authoritative chapters covering several applications of fractional calculus in engineering, life and social sciences, including applications in signal and image analysis, and chaos.
Автор: Bashir Ahmad, Sotiris K Ntouyas Название: Nonlocal Nonlinear Fractional-order Boundary Value Problems ISBN: 9811230404 ISBN-13(EAN): 9789811230400 Издательство: World Scientific Publishing Рейтинг: Цена: 27720.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
There has been a great advancement in the study of fractional-order nonlocal nonlinear boundary value problems during the last few decades. The interest in the subject of fractional-order boundary value problems owes to the extensive application of fractional differential equations in many engineering and scientific disciplines. Fractional-order differential and integral operators provide an excellent instrument for the description of memory and hereditary properties of various materials and processes, which contributed significantly to the popularity of the subject and motivated many researchers and modelers to shift their focus from classical models to fractional order models. Some peculiarities of physical, chemical or other processes happening inside the domain cannot be formulated with the aid of classical boundary conditions. This limitation led to the consideration of nonlocal and integral conditions which relate the boundary values of the unknown function to its values at some interior positions of the domain.
The main objective for writing this book is to present some recent results on single-valued and multi-valued boundary value problems, involving different kinds of fractional differential and integral operators, and several kinds of nonlocal multi-point, integral, integro-differential boundary conditions. Much of the content of this book contains the recent research published by the authors on the topic.
Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights.
Описание: In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called ``first order approach'' which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations.This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru