Описание: This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.
Автор: Lili Mou; Zhi Jin Название: Tree-Based Convolutional Neural Networks ISBN: 9811318697 ISBN-13(EAN): 9789811318696 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book proposes a novel neural architecture, tree-based convolutional neural networks (TBCNNs),for processing tree-structured data. TBCNNsare related to existing convolutional neural networks (CNNs) and recursive neural networks (RNNs), but they combine the merits of both: thanks to their short propagation path, they are as efficient in learning as CNNs; yet they are also as structure-sensitive as RNNs. In this book, readers will also find a comprehensive literature review of related work, detailed descriptions of TBCNNs and their variants, and experiments applied to program analysis and natural language processing tasks. It is also an enjoyable read for all those with a general interest in deep learning.
Описание: This book contains applications of CNN methods. The content is quite extensive, including the application of different CNN methods to various medical image processing problems. Readers will be able to analyze the effects of CNN methods presented in the book in medical applications.
Автор: Koonce, Brett Название: Convolutional neural networks with swift for tensorflow ISBN: 1484261674 ISBN-13(EAN): 9781484261675 Издательство: Springer Рейтинг: Цена: 7685.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Zafar Iffat, Tzanidou Giounona, Burton Richard Название: Hands-on Convolutional Neural Networks with Tensorflow ISBN: 1789130336 ISBN-13(EAN): 9781789130331 Издательство: Неизвестно Рейтинг: Цена: 6068.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Convolutional Neural Networks (CNN) are one of the most popular architectures used in computer vision apps. This book is an introduction to CNNs through solving real-world problems in deep learning while teaching you their implementation in popular Python library - TensorFlow. By the end of the book, you will be training CNNs in no time!
Автор: Ajay Dholakia Название: Introduction to Convolutional Codes with Applications ISBN: 1461361680 ISBN-13(EAN): 9781461361688 Издательство: Springer Рейтинг: Цена: 18284.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Introduction to Convolutional Codes with Applications is an introduction to the basic concepts of convolutional codes, their structure and classification, various error correction and decoding techniques for convolutionally encoded data, and some of the most common applications.
Автор: Masters Название: Deep Belief Nets in C++ and CUDA C: Volume 3 ISBN: 148423720X ISBN-13(EAN): 9781484237205 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Discover the essential building blocks of a common and powerful form of deep belief network: convolutional nets. This book shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a ‘thought process’ that is capable of learning abstract concepts built from simpler primitives. These models are especially useful for image processing applications.
At each step Deep Belief Nets in C++ and CUDA C: Volume 3 presents intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the executable CONVNET program which implements these algorithms, are available for free download.
What You Will Learn
Discover convolutional nets and how to use themBuild deep feedforward nets using locally connected layers, pooling layers, and softmax outputsMaster the various programming algorithms requiredCarry out multi-threaded gradient computations and memory allocations for this threadingWork with CUDA code implementations of all core computations, including layer activations and gradient calculationsMake use of the CONVNET program and manual to explore convolutional nets and case studies
Who This Book Is For
Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.
Описание: The book covers a variety of topics in Information and Communications Technology (ICT) and their impact on innovation and business. The authors discuss various innovations, business and industrial motivations, and impact on humans and the interplay between those factors in terms of finance, demand, and competition. Topics discussed include the convergence of Machine to Machine (M2M), Internet of Things (IoT), Social, and Big Data. They also discuss AI and its integration into technologies from machine learning, predictive analytics, security software, to intelligent agents, and many more. Contributions come from academics and professionals around the world.
Covers the most recent practices in ICT related topics pertaining to technological growth, innovation, and business;Presents a survey on the most recent technological areas revolutionizing how humans communicate and interact;Features four sections: IoT, Wireless Ad Hoc & Sensor Networks, Fog Computing, and Big Data Analytics.
Описание: This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases.
Автор: Prasant Kumar Pattnaik Название: Smart Healthcare Analytics in IoT Enabled Environment ISBN: 3030375501 ISBN-13(EAN): 9783030375508 Издательство: Springer Рейтинг: Цена: 22359.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book addresses various aspects of how smart healthcare can be used to detect and analyze diseases, the underlying methodologies, and related security concerns.
Автор: Umberto Michelucci Название: Advanced Applied Deep Learning ISBN: 1484249755 ISBN-13(EAN): 9781484249758 Издательство: Springer Рейтинг: Цена: 6288.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Develop and optimize deep learning models with advanced architectures. This book teaches you the intricate details and subtleties of the algorithms that are at the core of convolutional neural networks. In Advanced Applied Deep Learning, you will study advanced topics on CNN and object detection using Keras and TensorFlow. Along the way, you will look at the fundamental operations in CNN, such as convolution and pooling, and then look at more advanced architectures such as inception networks, resnets, and many more. While the book discusses theoretical topics, you will discover how to work efficiently with Keras with many tricks and tips, including how to customize logging in Keras with custom callback classes, what is eager execution, and how to use it in your models. Finally, you will study how object detection works, and build a complete implementation of the YOLO (you only look once) algorithm in Keras and TensorFlow. By the end of the book you will have implemented various models in Keras and learned many advanced tricks that will bring your skills to the next level.
What You Will LearnSee how convolutional neural networks and object detection workSave weights and models on diskPause training and restart it at a later stage Use hardware acceleration (GPUs) in your codeWork with the Dataset TensorFlow abstraction and use pre-trained models and transfer learningRemove and add layers to pre-trained networks to adapt them to your specific projectApply pre-trained models such as Alexnet and VGG16 to new datasets Who This Book Is ForScientists and researchers with intermediate-to-advanced Python and machine learning know-how. Additionally, intermediate knowledge of Keras and TensorFlow is expected.
Описание: This book reviews the state of the art in deep learning approaches to high-performance robust disease detection, robust and accurate organ segmentation in medical image computing (radiological and pathological imaging modalities), and the construction and mining of large-scale radiology databases.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru