Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Sufficient Dimension Reduction, Li, Bing


Варианты приобретения
Цена: 7501.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Li, Bing
Название:  Sufficient Dimension Reduction
ISBN: 9780367734725
Издательство: Taylor&Francis
Классификация:


ISBN-10: 0367734729
Обложка/Формат: Paperback
Страницы: 284
Вес: 0.57 кг.
Дата издания: 18.12.2020
Серия: Chapman & hall/crc monographs on statistics and applied probability
Язык: English
Размер: 231 x 155 x 15
Читательская аудитория: Tertiary education (us: college)
Подзаголовок: Methods and applications with r
Рейтинг:
Поставляется из: Европейский союз


Principal Manifolds for Data Visualization and Dimension Reduction

Автор: Gorban
Название: Principal Manifolds for Data Visualization and Dimension Reduction
ISBN: 3540737499 ISBN-13(EAN): 9783540737490
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The book starts with the quote of the classical Pearson definition of PCA and includes reviews of various methods: NLPCA, ICA, MDS, embedding and clustering algorithms, principal manifolds and SOM. New approaches to NLPCA, principal manifolds, branching principal components and topology preserving mappings are described.

Extremal Families and Systems of Sufficient Statistics

Автор: Steffen L. Lauritzen
Название: Extremal Families and Systems of Sufficient Statistics
ISBN: 0387968725 ISBN-13(EAN): 9780387968728
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The pOint of view behind the present work is that the connection between a statistical model and a statistical analysis-is a dua- lity (in a vague sense).

Factor analysis and dimension reduction in r

Автор: Garson, G. David (north Carolina State University, Raleigh, Usa)
Название: Factor analysis and dimension reduction in r
ISBN: 1032246693 ISBN-13(EAN): 9781032246697
Издательство: Taylor&Francis
Рейтинг:
Цена: 11023.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Factor Analysis and Dimension Reduction in R provides coverage, with worked examples, of a large number of dimension reduction procedures along with model performance metrics to compare them. Factor analysis in the form of principal components analysis (PCA) or principal factor analysis (PFA) is familiar to most social scientists. However, what is less familiar is understanding that factor analysis is a subset of the more general statistical family of dimension reduction methods.The social scientist's toolkit for factor analysis problems can be expanded to include the range of solutions this book presents. In addition to covering FA and PCA with orthogonal and oblique rotation, this book’s coverage includes higher-order factor models, bifactor models, models based on binary and ordinal data, models based on mixed data, generalized low-rank models, cluster analysis with GLRM, models involving supplemental variables or observations, Bayesian factor analysis, regularized factor analysis, testing for unidimensionality, and prediction with factor scores. The second half of the book deals with other procedures for dimension reduction. These include coverage of kernel PCA, factor analysis with multidimensional scaling, locally linear embedding models, Laplacian eigenmaps, diffusion maps, force directed methods, t-distributed stochastic neighbor embedding, independent component analysis (ICA), dimensionality reduction via regression (DRR), non-negative matrix factorization (NNMF), Isomap, Autoencoder, uniform manifold approximation and projection (UMAP) models, neural network models, and longitudinal factor analysis models. In addition, a special chapter covers metrics for comparing model performance.Features of this book include:Numerous worked examples with replicable R codeExplicit comprehensive coverage of data assumptionsAdaptation of factor methods to binary, ordinal, and categorical dataRe

Multidimensional Stationary Time Series

Автор: Bolla, Marianna
Название: Multidimensional Stationary Time Series
ISBN: 0367619709 ISBN-13(EAN): 9780367619701
Издательство: Taylor&Francis
Рейтинг:
Цена: 7042.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Multidimensional stationary time series

Автор: Bolla, Marianna (budapest University Of Technology And Economics) Szabados, Tamas (budapest University Of Technology And Economics, Hungary)
Название: Multidimensional stationary time series
ISBN: 0367569329 ISBN-13(EAN): 9780367569327
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book gives a brief survey of the theory of multidimensional (multivariate), weakly stationary time series, with emphasis on dimension reduction and prediction.

Factor Analysis and Dimension Reduction in R

Автор: Garson, G. David
Название: Factor Analysis and Dimension Reduction in R
ISBN: 1032246685 ISBN-13(EAN): 9781032246680
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Нет в наличии.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия