Автор: Yang, Yang Название: Age-Period-Cohort Analysis ISBN: 1466507527 ISBN-13(EAN): 9781466507524 Издательство: Taylor&Francis Рейтинг: Цена: 17609.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Название: Age, Period and Cohort Effects ISBN: 036717443X ISBN-13(EAN): 9780367174439 Издательство: Taylor&Francis Рейтинг: Цена: 6123.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is key reference material for researchers wanting to know how to appropriately deal with Age-Period-Cohort issues in their statistical modelling.
Название: Age, Period and Cohort Effects ISBN: 0367174421 ISBN-13(EAN): 9780367174422 Издательство: Taylor&Francis Рейтинг: Цена: 22202.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book is key reference material for researchers wanting to know how to appropriately deal with Age-Period-Cohort issues in their statistical modelling.
Автор: Fu, Wenjiang Название: A Practical Guide to Age-Period-Cohort Analysis ISBN: 036773480X ISBN-13(EAN): 9780367734800 Издательство: Taylor&Francis Рейтинг: Цена: 7501.00 р. Наличие на складе: Поставка под заказ.
Автор: O`Brien Название: Age-Period-Cohort Models, Approache ISBN: 1466551534 ISBN-13(EAN): 9781466551534 Издательство: Taylor&Francis Рейтинг: Цена: 12707.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Develop a Deep Understanding of the Statistical Issues of APC Analysis
Age-Period-Cohort Models: Approaches and Analyses with Aggregate Data presents an introduction to the problems and strategies for modeling age, period, and cohort (APC) effects for aggregate-level data. These strategies include constrained estimation, the use of age and/or period and/or cohort characteristics, estimable functions, variance decomposition, and a new technique called the s-constraint approach.
See How Common Methods Are Related to Each Other
After a general and wide-ranging introductory chapter, the book explains the identification problem from algebraic and geometric perspectives and discusses constrained regression. It then covers important strategies that provide information that does not directly depend on the constraints used to identify the APC model. The final chapter presents a specific empirical example showing that a combination of the approaches can make a compelling case for particular APC effects.
Get Answers to Questions about the Relationships of Ages, Periods, and Cohorts to Important Substantive Variables
This book incorporates several APC approaches into one resource, emphasizing both their geometry and algebra. This integrated presentation helps researchers effectively judge the strengths and weaknesses of the methods, which should lead to better future research and better interpretation of existing research.
Автор: O`Brien, Robert Название: Age-Period-Cohort Models ISBN: 0367576082 ISBN-13(EAN): 9780367576080 Издательство: Taylor&Francis Рейтинг: Цена: 7348.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: W.M. Mason; S. Fienberg Название: Cohort Analysis in Social Research ISBN: 1461385385 ISBN-13(EAN): 9781461385387 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Gregory R. Hancock, Jeffrey R. Harring, George B. Macready Название: Advances in Latent Class Analysis: A Festschrift in Honor of C. Mitchell Dayton ISBN: 164113562X ISBN-13(EAN): 9781641135627 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 14276.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: What is latent class analysis? If you asked that question thirty or forty years ago you would have gotten a different answer than you would today. Closer to its time of inception, latent class analysis was viewed primarily as a categorical data analysis technique, often framed as a factor analysis model where both the measured variable indicators and underlying latent variables are categorical. Today, however, it rests within much broader mixture and diagnostic modeling framework, integrating measured and latent variables that may be categorical and/or continuous, and where latent classes serve to define the subpopulations for whom many aspects of the focal measured and latent variable model may differ. For latent class analysis to take these developmental leaps required contributions that were methodological, certainly, as well as didactic. Among the leaders on both fronts was C. Mitchell “Chan” Dayton, at the University of Maryland, whose work in latent class analysis spanning several decades helped the method to expand and reach its current potential. The current volume in the Center for Integrated Latent Variable Research (CILVR) series reflects the diversity that is latent class analysis today, celebrating work related to, made possible by, and inspired by Chan’s noted contributions, and signaling the even more exciting future yet to come.
Автор: Gregory R. Hancock, Jeffrey R. Harring, George B. Macready Название: Advances in Latent Class Analysis: A Festschrift in Honor of C. Mitchell Dayton ISBN: 1641135611 ISBN-13(EAN): 9781641135610 Издательство: Mare Nostrum (Eurospan) Рейтинг: Цена: 7623.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: What is latent class analysis? If you asked that question thirty or forty years ago you would have gotten a different answer than you would today. Closer to its time of inception, latent class analysis was viewed primarily as a categorical data analysis technique, often framed as a factor analysis model where both the measured variable indicators and underlying latent variables are categorical. Today, however, it rests within much broader mixture and diagnostic modeling framework, integrating measured and latent variables that may be categorical and/or continuous, and where latent classes serve to define the subpopulations for whom many aspects of the focal measured and latent variable model may differ. For latent class analysis to take these developmental leaps required contributions that were methodological, certainly, as well as didactic. Among the leaders on both fronts was C. Mitchell “Chan” Dayton, at the University of Maryland, whose work in latent class analysis spanning several decades helped the method to expand and reach its current potential. The current volume in the Center for Integrated Latent Variable Research (CILVR) series reflects the diversity that is latent class analysis today, celebrating work related to, made possible by, and inspired by Chan’s noted contributions, and signaling the even more exciting future yet to come.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru