Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Mixed Effects Models for Complex Data, Wu, Lang


Варианты приобретения
Цена: 22202.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wu, Lang
Название:  Mixed Effects Models for Complex Data
ISBN: 9781420074024
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1420074024
Обложка/Формат: Hardback
Страницы: 440
Вес: 0.75 кг.
Дата издания: 11.11.2009
Язык: English
Иллюстрации: 19 tables, black and white; 22 illustrations, black and white
Размер: 244 x 165 x 18
Читательская аудитория: Professional & vocational
Рейтинг:
Поставляется из: Европейский союз


Applications of Linear and Nonlinear Models

Автор: Erik W. Grafarend , Silvelyn Zwanzig , Joseph L. Awange
Название: Applications of Linear and Nonlinear Models
ISBN: 3030945979 ISBN-13(EAN): 9783030945978
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides numerous examples of linear and nonlinear model applications. Here, we present a nearly complete treatment of the Grand Universe of linear and weakly nonlinear regression models within the first 8 chapters. Our point of view is both an algebraic view and a stochastic one. For example, there is an equivalent lemma between a best, linear uniformly unbiased estimation (BLUUE) in a Gauss–Markov model and a least squares solution (LESS) in a system of linear equations. While BLUUE is a stochastic regression model, LESS is an algebraic solution. In the first six chapters, we concentrate on underdetermined and overdetermined linear systems as well as systems with a datum defect. We review estimators/algebraic solutions of type MINOLESS, BLIMBE, BLUMBE, BLUUE, BIQUE, BLE, BIQUE, and total least squares. The highlight is the simultaneous determination of the first moment and the second central moment of a probability distribution in an inhomogeneous multilinear estimation by the so-called E-D correspondence as well as its Bayes design. In addition, we discuss continuous networks versus discrete networks, use of Grassmann–Plucker coordinates, criterion matrices of type Taylor–Karman as well as FUZZY sets. Chapter seven is a speciality in the treatment of an overjet. This second edition adds three new chapters: (1) Chapter on integer least squares that covers (i) model for positioning as a mixed integer linear model which includes integer parameters. (ii) The general integer least squares problem is formulated, and the optimality of the least squares solution is shown. (iii) The relation to the closest vector problem is considered, and the notion of reduced lattice basis is introduced. (iv) The famous LLL algorithm for generating a Lovasz reduced basis is explained. (2) Bayes methods that covers (i) general principle of Bayesian modeling. Explain the notion of prior distribution and posterior distribution. Choose the pragmatic approach for exploring the advantages of iterative Bayesian calculations and hierarchical modeling. (ii) Present the Bayes methods for linear models with normal distributed errors, including noninformative priors, conjugate priors, normal gamma distributions and (iii) short outview to modern application of Bayesian modeling. Useful in case of nonlinear models or linear models with no normal distribution: Monte Carlo (MC), Markov chain Monte Carlo (MCMC), approximative Bayesian computation (ABC) methods. (3) Error-in-variables models, which cover: (i) Introduce the error-in-variables (EIV) model, discuss the difference to least squares estimators (LSE), (ii) calculate the total least squares (TLS) estimator. Summarize the properties of TLS, (iii) explain the idea of simulation extrapolation (SIMEX) estimators, (iv) introduce the symmetrized SIMEX (SYMEX) estimator and its relation to TLS, and (v) short outview to nonlinear EIV models. The chapter on algebraic solution of nonlinear system of equations has also been updated in line with the new emerging field of hybrid numeric-symbolic solutions to systems of nonlinear equations, ermined system of nonlinear equations on curved manifolds. The von Mises–Fisher distribution is characteristic for circular or (hyper) spherical data. Our last chapter is devoted to probabilistic regression, the special Gauss–Markov model with random effects leading to estimators of type BLIP and VIP including Bayesian estimation. A great part of the work is presented in four appendices. Appendix A is a treatment, of tensor algebra, namely linear algebra, matrix algebra, and multilinear algebra. Appendix B is devoted to sampling distributions and their use in terms of confidence intervals and confidence regions. Appendix C reviews the elementary notions of statistics, namely random events and stochastic processes. Appendix D introduces the basics of Groebner basis algebra, its careful definition, the Buchberger algorithm, especially the C. F. Gauss combinatorial algorithm.

Stochastic Methods for Modeling and Predicting Complex Dynamical Systems

Автор: Chen
Название: Stochastic Methods for Modeling and Predicting Complex Dynamical Systems
ISBN: 3031222482 ISBN-13(EAN): 9783031222481
Издательство: Springer
Рейтинг:
Цена: 5589.00 р.
Наличие на складе: Нет в наличии.

Описание: This book enables readers to understand, model, and predict complex dynamical systems using new methods with stochastic tools. The author presents a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. An emphasis is placed on the balance between computational efficiency and modeling accuracy, providing readers with ideas to build useful models in practice. Successful modeling of complex systems requires a comprehensive use of qualitative and quantitative modeling approaches, novel efficient computational methods, physical intuitions and thinking, as well as rigorous mathematical theories. As such, mathematical tools for understanding, modeling, and predicting complex dynamical systems using various suitable stochastic tools are presented. Both theoretical and numerical approaches are included, allowing readers to choose suitable methods in different practical situations. The author provides practical examples and motivations when introducing various mathematical and stochastic tools and merges mathematics, statistics, information theory, computational science, and data science. In addition, the author discusses how to choose and apply suitable mathematical tools to several disciplines including pure and applied mathematics, physics, engineering, neural science, material science, climate and atmosphere, ocean science, and many others. Readers will not only learn detailed techniques for stochastic modeling and prediction, but will develop their intuition as well. Important topics in modeling and prediction including extreme events, high-dimensional systems, and multiscale features are discussed.

Complex Models and Computational Methods in Statistics

Автор: Matteo Grigoletto; Francesco Lisi; Sonia Petrone
Название: Complex Models and Computational Methods in Statistics
ISBN: 8847028701 ISBN-13(EAN): 9788847028708
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume details statistical methods for high-dimensional problems. It includes a wide range of statistical applications.

Mixed Effects Models for the Population Approach

Автор: Lavielle, Marc
Название: Mixed Effects Models for the Population Approach
ISBN: 1032477350 ISBN-13(EAN): 9781032477350
Издательство: Taylor&Francis
Рейтинг:
Цена: 7042.00 р.
Наличие на складе: Нет в наличии.

Mixed Effects Models for the Population Approach

Автор: Lavielle, Marc
Название: Mixed Effects Models for the Population Approach
ISBN: 1482226502 ISBN-13(EAN): 9781482226508
Издательство: Taylor&Francis
Рейтинг:
Цена: 17609.00 р.
Наличие на складе: Нет в наличии.

Dynamic Mixed Models for Familial Longitudinal Data

Автор: Brajendra C. Sutradhar
Название: Dynamic Mixed Models for Familial Longitudinal Data
ISBN: 1461428017 ISBN-13(EAN): 9781461428015
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a theoretical foundation for analysis of discrete data such as count and binary data in the longitudinal setup. It presents differences between the familial and longitudinal correlation models, and illustrations of real life data analysis.

Plane Answers to Complex Questions

Автор: Ronald Christensen
Название: Plane Answers to Complex Questions
ISBN: 1441929711 ISBN-13(EAN): 9781441929716
Издательство: Springer
Рейтинг:
Цена: 12571.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook provides a wide-ranging introduction to the use and theory of linear models for analyzing data. The authors emphasis is on providing a unified treatment of linear models, including analysis of variance models and regression models, based on projections, orthogonality, and other vector space ideas.

Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects

Автор: Hodges James S.
Название: Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects
ISBN: 0367533731 ISBN-13(EAN): 9780367533731
Издательство: Taylor&Francis
Рейтинг:
Цена: 9645.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book takes a first step in developing a full theory of richly parameterized models, which would allow statisticians to better understand their analysis results.

Mixed Effects Models for Complex Data

Автор: Wu, Lang
Название: Mixed Effects Models for Complex Data
ISBN: 0367384914 ISBN-13(EAN): 9780367384913
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data.



An overview of general models and methods, along with motivating examples
After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers.



Self-contained coverage of specific topics
Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models.



Background material
In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra.





Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead

Asymptotic Analysis of Mixed Effects Models

Автор: Jiang, Jiming
Название: Asymptotic Analysis of Mixed Effects Models
ISBN: 1032096772 ISBN-13(EAN): 9781032096773
Издательство: Taylor&Francis
Рейтинг:
Цена: 7348.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account

Mixed effects models and extensions in ecology with r

Автор: Zuur, Alain F. Ieno, Elena N. Walker, Neil Saveliev, Anatoly A. Smith, Graham M.
Название: Mixed effects models and extensions in ecology with r
ISBN: 1441927646 ISBN-13(EAN): 9781441927644
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Building on their previous book on the subject, the authors provide an expanded introduction to using Regression to analyze ecological data. As with the earlier book, real data sets from postgraduate ecological studies or research projects are used throughout.

Linear Mixed Models for Longitudinal Data

Автор: Geert Verbeke; Geert Molenberghs
Название: Linear Mixed Models for Longitudinal Data
ISBN: 1475773846 ISBN-13(EAN): 9781475773842
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия