Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Identity and Integration, Peters, Bernhard


Варианты приобретения
Цена: 22202.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания

Автор: Peters, Bernhard
Название:  Identity and Integration
ISBN: 9780754632115
Издательство: Taylor&Francis
Классификация:


ISBN-10: 0754632113
Обложка/Формат: Hardback
Страницы: 256
Вес: 0.49 кг.
Дата издания: 28.08.2003
Серия: Research in migration and ethnic relations series
Язык: English
Размер: 162 x 226 x 19
Читательская аудитория: Undergraduate
Подзаголовок: Migrants in western europe
Рейтинг:
Поставляется из: Европейский союз


Elements of Causal Inference: Foundations and Learning Algorithms

Автор: Peters Jonas, Janzing Dominik, Scholkopf Bernhard
Название: Elements of Causal Inference: Foundations and Learning Algorithms
ISBN: 0262037319 ISBN-13(EAN): 9780262037310
Издательство: MIT Press
Рейтинг:
Цена: 7719.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.

The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.

After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.

The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия