Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: McElreath, Richard Название: Statistical Rethinking ISBN: 036713991X ISBN-13(EAN): 9780367139919 Издательство: Taylor&Francis Рейтинг: Цена: 12554.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Statistical Rethinking: A Bayesian Course with Examples in R and Stan, Second Edition builds knowledge/confidence in statistical modeling. Pushes readers to perform step-by-step calculations (usually automated.) Unique, computational approach.
Автор: Gelfand, Alan E. Fuentes, Montserrat Guttorp, Pete Название: Handbook of spatial statistics ISBN: 1420072870 ISBN-13(EAN): 9781420072877 Издательство: Taylor&Francis Рейтинг: Цена: 15541.00 р. 22202.00-30% Наличие на складе: Есть (2 шт.) Описание: Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.
Автор: Krijnen, Wim P. , Wit, Ernst C. Название: Computational and statistical methods for chemical engineering ISBN: 1032013249 ISBN-13(EAN): 9781032013244 Издательство: Taylor&Francis Рейтинг: Цена: 11482.00 р. Наличие на складе: Поставка под заказ.
Описание: Before the data revolution, most books focused either on mathematical modeling of chemical processes or exploratory chemometrics. This book aims to combine these two approaches and provide aspiring chemical engineers a single, comprehensive account of computational and statistical methods. Each chapter is accompanied by extensive exercises.
Название: Real-World Evidence in Drug Development and Evaluation ISBN: 036702621X ISBN-13(EAN): 9780367026219 Издательство: Taylor&Francis Рейтинг: Цена: 19906.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book concerns use of real world data (RWD) and real world evidence (RWE) to aid drug development across product cycle. RWD are healthcare data that are collected outside the constraints of conventual controlled randomized trials (CRTs); whereas RWE is the knowledge derived from aggregation and analysis of RWD.
Автор: Daniel Durstewitz Название: Advanced Data Analysis in Neuroscience ISBN: 3319867504 ISBN-13(EAN): 9783319867502 Издательство: Springer Рейтинг: Цена: 7965.00 р. Наличие на складе: Поставка под заказ.
Описание: This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics.
Описание: This book provides the theoretical background to approach decision theory from a statistical perspective. It covers both traditional approaches, in terms of value theory and expected utility theory, and recent developments, in terms of causal inference.
Автор: Uwe Engel, Anabel Quan-Haase, Sunny Xun Название: Handbook of Computational Social Science, Volume 2 ISBN: 1032077700 ISBN-13(EAN): 9781032077703 Издательство: Taylor&Francis Рейтинг: Цена: 8726.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches.
Автор: Wasserman, Larry Название: All of statistics: A Concise Course in Statistical Inference ISBN: 1441923225 ISBN-13(EAN): 9781441923226 Издательство: Springer Рейтинг: Цена: 7965.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Описание: This is a history of parametric statistical inference, written by one of the most important historians of statistics of the 20th century, Anders Hald. This book can be viewed as a follow-up to his two most recent books, although this current text is much more streamlined and contains new analysis of many ideas and developments. And unlike his other books, which were encyclopedic by nature, this book can be used for a course on the topic, the only prerequisites being a basic course in probability and statistics.The book is divided into five main sections:* Binomial statistical inference;* Statistical inference by inverse probability;* The central limit theorem and linear minimum variance estimation by Laplace and Gauss;* Error theory, skew distributions, correlation, sampling distributions;* The Fisherian Revolution, 1912-1935.Throughout each of the chapters, the author provides lively biographical sketches of many of the main characters, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. He also examines the roles played by DeMoivre, James Bernoulli, and Lagrange, and he provides an accessible exposition of the work of R.A. Fisher.This book will be of interest to statisticians, mathematicians, undergraduate and graduate students, and historians of science.
Автор: Donald B. Percival, Andrew T. Walden Название: Spectral Analysis for Univariate Time Series ISBN: 1107028140 ISBN-13(EAN): 9781107028142 Издательство: Cambridge Academ Рейтинг: Цена: 14573.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Spectral analysis is an important technique for interpreting time series data. This book uses the R language and real world examples to show data analysts interested in time series in the environmental, engineering and physical sciences how to bridge the gap between the statistical theory behind spectral analysis and its application to actual data.
Описание: In order to assist a hospital in managing its resources and patients, modelling the length of stay is highly important. Recent health scholarship and practice has largely remained empirical, dwelling on primary data. This is critically important, first, because health planners generally rely on data to establish trends and patterns of disease burden at national or regional level. Secondly, epidemiologists depend on data to investigate possible risk factors of the disease. Yet the use of routine or secondary data has, in recent years, proved increasingly significant in such endeavours. Various units within the health systems collected such data primarily as part of the process for surveillance, monitoring and evaluation. Such data is sometimes periodically supplemented by population-based sample survey datasets. Thirdly, coupled with statistical tools, public health professionals are able to analyze health data and breathe life into what may turn out to be meaningless data. The main focus of this book is to present and showcase advanced modelling of routine or secondary survey data. Studies demonstrate that statistical literacy and knowledge are needed to understand health research outputs. The advent of user-friendly statistical packages combined with computing power and widespread availability of public health data resulted in more reported epidemiological studies in literature. However, analysis of secondary data, has some unique challenges. These are most widely reported health literature, so far has failed to recognize resulting in inappropriate analysis, and erroneous conclusions. This book presents the application of advanced statistical techniques to real examples emanating from routine or secondary survey data. These are essentially datasets in which the two editors have been involved, demonstrating how to tackle these challenges. Some of these challenges are: the complex sampling design of the surveys, the hierarchical nature of the data, the dependence of data at the sampled cluster and missing data among many more challenges. Using data from the Health Management Information System (HMIS), and Demographic and Health Survey (DHS), we provide various approaches and techniques of dealing with data complexity, how to handle correlated or clustered data. Each chapter presents an example code, which can be used to analyze similar data in R, Stata or SPSS. To make the book more concise, we have provided the codes on the books website. The book considers four main topics in the field of health sciences research: (i) structural equation modeling; (ii) spatial and spatio-temporal modeling; (iii) correlated or clustered copula modeling; and (iv) survival analysis. The book has potential to impact methodologists, including students undertaking Masters or Doctoral level programmes as well as other researchers seeking some related reference on quantitative analysis in public health or health sciences or other areas where data of similar nature would be applicable. Further the book can be a resource to public health professionals interested in quantitative approaches to answer questions of epidemiological nature. Each chapter starts with a motivating background, review of statistical methods, analysis and results, ending discussion and possible recommendations.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru