Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Predicting the Unknown, Kampakis


Варианты приобретения
Цена: 8384.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Kampakis
Название:  Predicting the Unknown
ISBN: 9781484295045
Издательство: Springer
Классификация:



ISBN-10: 1484295048
Обложка/Формат: Soft cover
Страницы: 264
Вес: 0.00 кг.
Дата издания: 30.06.2023
Язык: English
Основная тема: Computer Science
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: As a society, we’re in a constant struggle to control uncertainty and predict the unknown. Quite often, we think of scientific fields and theories as being separate from each other. But a more careful investigation can uncover the common thread that ties many of those together. From ChatGPT, to Amazon’s Alexa, to Apple’s Siri, data science, and computer science have become part of our lives. In the meantime, the demand for data scientists has grown, as the field has been increasingly called the “sexiest profession.” This book attempts to specifically cover this gap in literature between data science, machine learning and artificial intelligence (AI). How was uncertainty approached historically, and how has it evolved since? What schools of thought exist in philosophy, mathematics, and engineering, and what role did they play in the development of data science? It uses the history of data science as a stepping stone to explain what the future might hold. Predicting the Unknown provides the framework that will help you understand where AI is headed, and how to best prepare for the world that’s coming in the next few years, both as a society and within a business. It is not technical and avoids equations or technical explanations, yet is written for the intellectually curious reader, and the technical expert interested in the historical details that can help contextualize how we got here. What You’ll Learn * Explore the bigger picture of data science and see how to best anticipate future changes in that field * Understand machine learning, AI, and data science * Examine data science and AI through engaging historical and human-centric narratives Who is This Book For Business leaders and technology enthusiasts who are trying to understand how to think about data science and AI
Дополнительное описание: 1. Where Are We Now? A Brief History of Uncertainty.- 2. Truth, Logic and the Problem of Induction.- 3. Swans and Space Invaders.- 4. Probability: To Bayes, or not to Bayes?.- 5. What’s Maths Got to Do With It? The Power of Probability Distributions.- 6.



Stochastic Methods for Modeling and Predicting Complex Dynamical Systems

Автор: Chen
Название: Stochastic Methods for Modeling and Predicting Complex Dynamical Systems
ISBN: 3031222482 ISBN-13(EAN): 9783031222481
Издательство: Springer
Рейтинг:
Цена: 5589.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book enables readers to understand, model, and predict complex dynamical systems using new methods with stochastic tools. The author presents a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. An emphasis is placed on the balance between computational efficiency and modeling accuracy, providing readers with ideas to build useful models in practice. Successful modeling of complex systems requires a comprehensive use of qualitative and quantitative modeling approaches, novel efficient computational methods, physical intuitions and thinking, as well as rigorous mathematical theories. As such, mathematical tools for understanding, modeling, and predicting complex dynamical systems using various suitable stochastic tools are presented. Both theoretical and numerical approaches are included, allowing readers to choose suitable methods in different practical situations. The author provides practical examples and motivations when introducing various mathematical and stochastic tools and merges mathematics, statistics, information theory, computational science, and data science. In addition, the author discusses how to choose and apply suitable mathematical tools to several disciplines including pure and applied mathematics, physics, engineering, neural science, material science, climate and atmosphere, ocean science, and many others. Readers will not only learn detailed techniques for stochastic modeling and prediction, but will develop their intuition as well. Important topics in modeling and prediction including extreme events, high-dimensional systems, and multiscale features are discussed.

Predicting Human Decision-Making

Автор: Rosenfeld, Ariel Kraus, Sarit
Название: Predicting Human Decision-Making
ISBN: 3031000234 ISBN-13(EAN): 9783031000232
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Predicting Storm Surges: Chaos, Computational Intelligence, Data Assimilation and Ensembles

Автор: Siek, Michael
Название: Predicting Storm Surges: Chaos, Computational Intelligence, Data Assimilation and Ensembles
ISBN: 041562102X ISBN-13(EAN): 9780415621021
Издательство: Taylor&Francis
Рейтинг:
Цена: 7348.00 р.
Наличие на складе: Нет в наличии.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия