Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Trustworthy Federated Learning, Goebel


Варианты приобретения
Цена: 7685.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Goebel
Название:  Trustworthy Federated Learning
ISBN: 9783031289958
Издательство: Springer
Классификация:


ISBN-10: 3031289951
Обложка/Формат: Soft cover
Страницы: 159
Вес: 0.27 кг.
Дата издания: 12.04.2023
Серия: Lecture notes in computer science
Язык: English
Издание: 1st ed. 2023
Иллюстрации: 49 illustrations, color; 4 illustrations, black and white; x, 159 p. 53 illus., 49 illus. in color.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Computer Science
Подзаголовок: First international workshop, fl 2022, held in conjunction with ijcai 2022, vienna, austria, july 23, 2022, revised selected papers
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.
Дополнительное описание: Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federa



Trustworthy Machine Learning for Healthcare

Автор: Chen
Название: Trustworthy Machine Learning for Healthcare
ISBN: 3031395387 ISBN-13(EAN): 9783031395383
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of First International Workshop, TML4H 2023, held virtually, in May 2023. The 16 full papers included in this volume were carefully reviewed and selected from 30 submissions. The goal of this workshop is to bring together experts from academia, clinic, and industry with an insightful vision of promoting trustworthy machine learning in healthcare in terms of scalability, accountability, and explainability.

Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps

Автор: Rothman Denis
Название: Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps
ISBN: 1800208138 ISBN-13(EAN): 9781800208131
Издательство: Неизвестно
Рейтинг:
Цена: 10114.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In today`s era of AI, accurately interpreting and communicating trustworthy, fair, and secure AI findings have become a crucial skill to master. This book bridges the gap between AI`s pitfalls and potential by helping you build the ability to leverage machine learning with Python to visualize and integrate AI.

Human and machine learning

Название: Human and machine learning
ISBN: 3319904027 ISBN-13(EAN): 9783319904023
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications.This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making.This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия