Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Cross-Lingual Word Embeddings, Sogaard, Anders Vulic, Ivan Ruder, Sebastian Faruqui, Manaal


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Sogaard, Anders Vulic, Ivan Ruder, Sebastian Faruqui, Manaal
Название:  Cross-Lingual Word Embeddings
ISBN: 9783031010439
Издательство: Springer
Классификация:


ISBN-10: 3031010434
Обложка/Формат: Paperback
Страницы: 120
Вес: 0.27 кг.
Дата издания: 05.06.2019
Серия: Synthesis lectures on human language technologies
Язык: English
Иллюстрации: Xi, 120 p.
Размер: 235 x 191
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии


Embeddings in Natural Language Processing

Автор: Pilehvar, Mohammad Taher Camacho-Collados, Jose
Название: Embeddings in Natural Language Processing
ISBN: 3031010493 ISBN-13(EAN): 9783031010491
Издательство: Springer
Рейтинг:
Цена: 7685.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings.

Embeddings in natural language processing

Автор: Pilehvar, Mohammad Taher Camacho-collados, Jose
Название: Embeddings in natural language processing
ISBN: 1636390218 ISBN-13(EAN): 9781636390215
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 9286.00 р.
Наличие на складе: Нет в наличии.

Описание: Provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings.

Embeddings in natural language processing

Автор: Pilehvar, Mohammad Taher Camacho-collados, Jose
Название: Embeddings in natural language processing
ISBN: 1636390234 ISBN-13(EAN): 9781636390239
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12058.00 р.
Наличие на складе: Нет в наличии.

Описание: Provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings.

Multi-lingual Information Access in South Asian Languages

Автор: Prasenjit Majumder; Mandar Mitra; Pushpak Bhattach
Название: Multi-lingual Information Access in South Asian Languages
ISBN: 3642400868 ISBN-13(EAN): 9783642400865
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the thoroughly refereed post-proceedings of the Second and Third Workshops of the Forum for Information Retrieval Evaluation, FIRE 2010 and 2011, on Multi-lingual Information Access in South Asian Languages held in Gandhinagar, India, in February 2010 and in Bombay, India, in December 2011.

Network Embedding: Theories, Methods, and Applications

Автор: Yang Cheng, Liu Zhiyuan, Tu Cunchao
Название: Network Embedding: Theories, Methods, and Applications
ISBN: 1636390463 ISBN-13(EAN): 9781636390468
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 15939.00 р.
Наличие на складе: Нет в наличии.

Описание:

Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.

This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.

Qos-Aware Virtual Network Embedding

Автор: Jiang Chunxiao, Zhang Peiying
Название: Qos-Aware Virtual Network Embedding
ISBN: 9811652201 ISBN-13(EAN): 9789811652202
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Therefore, network resources need to be reasonably allocated according to users` QoS requirements to avoid the waste of network resources.In this book, based on the analysis of the principle of VNE algorithm, we provide a VNE scheme for users with differentiated QoS requirements.

Graph Embedding for Pattern Analysis

Автор: Yun Fu; Yunqian Ma
Название: Graph Embedding for Pattern Analysis
ISBN: 1489990623 ISBN-13(EAN): 9781489990624
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph and graph in vector spaces, and describes their real-world applications.

Network Embedding

Автор: Yang, Cheng Liu, Zhiyuan Tu, Cunchao Shi, Chuan Sun, Maosong
Название: Network Embedding
ISBN: 3031004620 ISBN-13(EAN): 9783031004629
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.

Network Embedding: Theories, Methods, and Applications

Автор: Yang Cheng, Liu Zhiyuan, Tu Cunchao
Название: Network Embedding: Theories, Methods, and Applications
ISBN: 1636390447 ISBN-13(EAN): 9781636390444
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12751.00 р.
Наличие на складе: Нет в наличии.

Описание:

Many machine learning algorithms require real-valued feature vectors of data instances as inputs. By projecting data into vector spaces, representation learning techniques have achieved promising performance in many areas such as computer vision and natural language processing. There is also a need to learn representations for discrete relational data, namely networks or graphs. Network Embedding (NE) aims at learning vector representations for each node or vertex in a network to encode the topologic structure. Due to its convincing performance and efficiency, NE has been widely applied in many network applications such as node classification and link prediction.

This book provides a comprehensive introduction to the basic concepts, models, and applications of network representation learning (NRL). The book starts with an introduction to the background and rising of network embeddings as a general overview for readers. Then it introduces the development of NE techniques by presenting several representative methods on general graphs, as well as a unified NE framework based on matrix factorization. Afterward, it presents the variants of NE with additional information: NE for graphs with node attributes/contents/labels; and the variants with different characteristics: NE for community-structured/large-scale/heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.

Embedding Knowledge Graphs with RDF2vec

Автор: Paulheim
Название: Embedding Knowledge Graphs with RDF2vec
ISBN: 3031303865 ISBN-13(EAN): 9783031303869
Издательство: Springer
Рейтинг:
Цена: 6288.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book explains the ideas behind one of the most well-known methods for knowledge graph embedding of transformations to compute vector representations from a graph, known as RDF2vec. The authors describe its usage in practice, from reusing pre-trained knowledge graph embeddings to training tailored vectors for a knowledge graph at hand. They also demonstrate different extensions of RDF2vec and how they affect not only the downstream performance, but also the expressivity of the resulting vector representation, and analyze the resulting vector spaces and the semantic properties they encode.

Kernel mean embedding of distributions:

Автор: Muandet, Krikamol Fukumizu, Kenji Sriperumbudur, Bharath Scholkopf, Bernhard
Название: Kernel mean embedding of distributions:
ISBN: 1680832883 ISBN-13(EAN): 9781680832884
Издательство: Неизвестно
Рейтинг:
Цена: 13656.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph provides a comprehensive review of kernel mean embeddings of distributions and, in the course of doing so, discusses some challenging issues that could potentially lead to new research directions. The targeted audience includes graduate students and researchers in machine learning and statistics who are interested in the theory and applications of kernel mean embeddings.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия