Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition, Amaratunga


Варианты приобретения
Цена: 17574.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Amaratunga
Название:  Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition
ISBN: 9781118356333
Издательство: Wiley
Классификация:

ISBN-10: 1118356330
Обложка/Формат: Hardback
Страницы: 344
Вес: 0.59 кг.
Дата издания: 2014
Серия: Wiley series in probability and statistics
Язык: English
Издание: 2 ed
Размер: 241 x 160 x 23
Читательская аудитория: Professional & vocational
Основная тема: Statistical Genetics / Microarray Analysis
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии


Advanced analysis of gene expression microarray data

Автор: Zhang Aidong
Название: Advanced analysis of gene expression microarray data
ISBN: 9812566457 ISBN-13(EAN): 9789812566454
Издательство: World Scientific Publishing
Рейтинг:
Цена: 8981.00 р. 12830.00 -30%
Наличие на складе: Есть (4 шт.)
Описание: Focuses on the development and application of the advanced data mining, machine learning, and visualization techniques for the identification of significant patterns in gene expression microarray data. This book is suitable for biomedical researchers for learning the methods for analyzing gene expression microarray data.

High-dimensional Microarray Data Analysis

Автор: Shuichi Shinmura
Название: High-dimensional Microarray Data Analysis
ISBN: 9811359970 ISBN-13(EAN): 9789811359972
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows how to decompose high-dimensional microarrays into small subspaces (Small Matryoshkas, SMs), statistically analyze them, and perform cancer gene diagnosis. The information is useful for genetic experts, anyone who analyzes genetic data, and students to use as practical textbooks.Discriminant analysis is the best approach for microarray consisting of normal and cancer classes. Microarrays are linearly separable data (LSD, Fact 3). However, because most linear discriminant function (LDF) cannot discriminate LSD theoretically and error rates are high, no one had discovered Fact 3 until now. Hard-margin SVM (H-SVM) and Revised IP-OLDF (RIP) can find Fact3 easily. LSD has the Matryoshka structure and is easily decomposed into many SMs (Fact 4). Because all SMs are small samples and LSD, statistical methods analyze SMs easily. However, useful results cannot be obtained. On the other hand, H-SVM and RIP can discriminate two classes in SM entirely. RatioSV is the ratio of SV distance and discriminant range. The maximum RatioSVs of six microarrays is over 11.67%. This fact shows that SV separates two classes by window width (11.67%). Such easy discrimination has been unresolved since 1970. The reason is revealed by facts presented here, so this book can be read and enjoyed like a mystery novel.Many studies point out that it is difficult to separate signal and noise in a high-dimensional gene space. However, the definition of the signal is not clear. Convincing evidence is presented that LSD is a signal. Statistical analysis of the genes contained in the SM cannot provide useful information, but it shows that the discriminant score (DS) discriminated by RIP or H-SVM is easily LSD. For example, the Alon microarray has 2,000 genes which can be divided into 66 SMs. If 66 DSs are used as variables, the result is a 66-dimensional data. These signal data can be analyzed to find malignancy indicators by principal component analysis and cluster analysis.

Microarray Image and Data Analysis

Автор: Rueda, Luis
Название: Microarray Image and Data Analysis
ISBN: 1466586826 ISBN-13(EAN): 9781466586826
Издательство: Taylor&Francis
Рейтинг:
Цена: 19906.00 р.
Наличие на складе: Нет в наличии.

Methods of Microarray Data Analysis V

Автор: Patrick McConnell; Simon Lin; Patrick Hurban
Название: Methods of Microarray Data Analysis V
ISBN: 1441941797 ISBN-13(EAN): 9781441941794
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is dedicated solely to the analysis of microarray data. Its unique approach of presenting different methods by analyzing the same data set shows the strengths and weakness of each method. Part of the book is devoted to review papers, which provide a more general look at various analytical approaches.

Microarray Analysis

Автор: Mark Schena
Название: Microarray Analysis
ISBN: 0471414433 ISBN-13(EAN): 9780471414438
Издательство: Wiley
Рейтинг:
Цена: 26136.00 р.
Наличие на складе: Поставка под заказ.

Описание: * Provides a working knowledge of applications to a broad spectrum of disciplines.
* Includes coverage of bioinformatics, novel arrays, and applications for clinical studies.
* Supplemented with a separate chapter on the business of the technology.

DNA Methylation Microarrays

Автор: Wang, Sun-Chong
Название: DNA Methylation Microarrays
ISBN: 1420067273 ISBN-13(EAN): 9781420067279
Издательство: Taylor&Francis
Рейтинг:
Цена: 15312.00 р.
Наличие на складе: Нет в наличии.

DNA Methylation Microarrays

Автор: Wang, Sun-Chong , Petronis, Art
Название: DNA Methylation Microarrays
ISBN: 0367387409 ISBN-13(EAN): 9780367387402
Издательство: Taylor&Francis
Рейтинг:
Цена: 9798.00 р.
Наличие на складе: Нет в наличии.

Описание:

Providing an interface between dry-bench bioinformaticians and wet-lab biologists, DNA Methylation Microarrays: Experimental Design and Statistical Analysis presents the statistical methods and tools to analyze high-throughput epigenomic data, in particular, DNA methylation microarray data. Since these microarrays share the same underlying principles as gene expression microarrays, many of the analyses in the text also apply to microarray-based gene expression and histone modification (ChIP-on-chip) studies.

After introducing basic statistics, the book describes wet-bench technologies that produce the data for analysis and explains how to preprocess the data to remove systematic artifacts resulting from measurement imperfections. It then explores differential methylation and genomic tiling arrays. Focusing on exploratory data analysis, the next several chapters show how cluster and network analyses can link the functions and roles of unannotated DNA elements with known ones. The book concludes by surveying the open source software (R and Bioconductor), public databases, and other online resources available for microarray research.

Requiring only limited knowledge of statistics and programming, this book helps readers gain a solid understanding of the methodological foundations of DNA microarray analysis.

New Theory of Discriminant Analysis After R. Fisher: Advanced Research by the Feature Selection Method for Microarray Data

Автор: Shinmura Shuichi
Название: New Theory of Discriminant Analysis After R. Fisher: Advanced Research by the Feature Selection Method for Microarray Data
ISBN: 9811095469 ISBN-13(EAN): 9789811095467
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: 1 New Theory of Discriminant Analysis.- 1.1 Introduction.- 1.2 Motivation for our Research.- 1.3 Discriminant Functions.- 1.4 Unresolved Problem (Problem 1).- 1.5 LSD Discrimination (Problem 2).- 1.6 Generalized Inverse Matrices (Problem 3).- 1.7 K-fold Cross-validation (Problem 4).- 1.8 Matroska Feature Selection Method (Problem 5) .- 1.9 Summary.- References.- 2 Iris Data and Fisher's Assumption.- 2.1 Introduction.- 2.2 Iris Data.- 2.3 Comparison of Seven LDFs.- 2.4 100-folf Cross-validation for Small Sample Method (Method 1).- 2.5 Summary.- References.- 3 The Cephalo-Pelvic Disproportion (CPD) Data with Collinearity.- 3.1 Introduction.- 3.2 CPD Data.- 3.3 100-folf Cross-validation.- 3.4 Trial to Remove Collinearity.- 3.5 Summary.- References.- 4 Student Data and Problem 1.- 4.1 Introduction.- 4.2 Student Data.- 4.3 100-folf Cross-validation for Student Data.- 4.4 Student Linearly Separable Data.- 4.5 Summary.- References.- 5 The Pass/Fail Determination using Exam Scores -A Trivial Linear Discriminant Function.- 5.1 Introduction.- 5.2 Pass/Fail Determination by Exam Scores Data in 2012.- 5.3 Pass/Fail Determination by Exam Scores (50% Level in 2012).- 5.4 Pass/Fail Determination by Exam Scores (90% Level in 2012).- 5.5 Pass/Fail Determination by Exam Scores (10% Level in 2012).- 5.6 Summary.- 6 Best Model for the Swiss Banknote Data - Explanation 1 of Matroska Feature -selection Method (Method 2) -. References.- 6 Best Model for Swiss Banknote Data.- 6.1 Introduction.- 6.2 Swiss Banknote Data.- 6.3 100-folf Cross-validation for Small Sample Method.- 6.4 Explanation 1 for Swiss Banknote Data.- 6.5 Summary.- References.- 7 Japanese Automobile Data - Explanation 2 of Matroska Feature Selection Method (Method 2).- 7.1 Introduction.- 7.2 Japanese Automobile Data.- 7.3 100-folf Cross-validation (Method 1).- 7.4 Matroska Feature Selection Method (Method 2).- 7.5 Summary.- References.- 8 Matroska Feature Selection Method for Microarray Data (Method 2).- 8.1 Introduction.- 8.2 Matroska Feature Selection Method (Method2).- 8.3 Results of the Golub et al. Dataset.- 8.4 How to Analyze the First BGS.- 8.5 Statistical Analysis of SM1.- 8.6 Summary.- References.- 9 LINGO Program 1 of Method 1.- 9.1 Introduction.- 9.2 Natural (Mathematical) Notation by LINGO.- 9.3 Iris Data in Excel.- 9.4 Six LDFs by LINGO.- 9.5 Discrimination of Iris Data by LINGO.- 9.6 How to Generate Re-sampling Samples and Prepare Data in Excel File.- 9.7 Set Model by LINGO.- Index.

Analysis of Microarray Gene Expression Data

Автор: Mei-Ling Ting Lee
Название: Analysis of Microarray Gene Expression Data
ISBN: 1475788231 ISBN-13(EAN): 9781475788235
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: After genomic sequencing, microarray technology has emerged as a widely used platform for genomic studies in the life sciences. With the abundance of data produced from microarray studies, however, the ultimate impact of the studies on biology will depend heavily on data mining and statistical analysis.

Microarray Data Analysis

Автор: Michael J. Korenberg
Название: Microarray Data Analysis
ISBN: 1627039090 ISBN-13(EAN): 9781627039093
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this new volume, renowned authors contribute fascinating, cutting-edge insights into microarray data analysis. Information on an array of topics is included in this innovative book including in-depth insights into presentations of genomic signal processing.

Methods of Microarray Data Analysis

Автор: Simon M. Lin; Kimberly F. Johnson
Название: Methods of Microarray Data Analysis
ISBN: 1461352819 ISBN-13(EAN): 9781461352815
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Papers from CAMDA 2000, December 18-19, 2000, Duke University, Durham, NC, USA

Methods of Microarray Data Analysis II: Papers from CAMDA `01

Автор: Simon M. Lin (Editor), Kimberly F. Johnson
Название: Methods of Microarray Data Analysis II: Papers from CAMDA `01
ISBN: 1475788312 ISBN-13(EAN): 9781475788310
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In a single reference, readers can learn about the most up-to-date methods, ranging from data normalization, feature selection, and discriminative analysis to machine learning techniques. Methods of Microarray Data Analysis II focuses on a single data set, using a different method of analysis in each chapter.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия