Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks, Douglas J. Santry



Варианты приобретения
Цена: 18361р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 7 апр 2025
Ориентировочная дата поставки: Апрель- начало Мая
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Douglas J. Santry   (Дуглас Дж. Сантри)
Название:  Demystifying Deep Learning: An Introduction to the Mathematics of Neural Networks
Перевод названия: Дуглас Дж. Сантри: Демистификация глубокого обучения. Введение в математику нейронных сетей
ISBN: 9781394205608
Издательство: Wiley
Классификация:
ISBN-10: 1394205600
Обложка/Формат: Hardback
Страницы: 256
Вес: 0.621 кг.
Дата издания: 20.11.2023
Подзаголовок: An introduction to the mathematics of neural networks
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии


Wavelet Neural Networks

Автор: Alexandridis Antonis K.
Название: Wavelet Neural Networks
ISBN: 1118592522 ISBN-13(EAN): 9781118592526
Издательство: Wiley
Рейтинг:
Цена: 15435 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Through extensive examples and case studies, Wavelet Neural Networks provides a step-by-step introduction to modeling, training, and forecasting using wavelet networks.

Multi-Objective Stochastic Programming in Fuzzy Environments

Автор: Animesh Biswas, Arnab Kumar De
Название: Multi-Objective Stochastic Programming in Fuzzy Environments
ISBN: 1522592962 ISBN-13(EAN): 9781522592969
Издательство: Eurospan
Рейтинг:
Цена: 28614 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It is frequently observed that most decision-making problems involve several objectives, and the aim of the decision makers is to find the best decision by fulfilling the aspiration levels of all the objectives. Multi-objective decision making is especially suitable for the design and planning steps and allows a decision maker to achieve the optimal or aspired goals by considering the various interactions of the given constraints. Multi-Objective Stochastic Programming in Fuzzy Environments discusses optimization problems with fuzzy random variables following several types of probability distributions and different types of fuzzy numbers with different defuzzification processes in probabilistic situations. The content within this publication examines such topics as waste management, agricultural systems, and fuzzy set theory. It is designed for academicians, researchers, and students.

Applied Deep Learning with PyTorch

Автор: Saleh Hyatt
Название: Applied Deep Learning with PyTorch
ISBN: 1789804590 ISBN-13(EAN): 9781789804591
Издательство: Неизвестно
Рейтинг:
Цена: 4572 р.
Наличие на складе: Невозможна поставка.

Описание: Starting with the basics of deep learning and their various applications, Applied Deep Learning with PyTorch shows you how to solve trending tasks, such as image classification and natural language processing by understanding the different architectures of the neural networks.

Higher-Order Networks

Автор: Ginestra Bianconi
Название: Higher-Order Networks
ISBN: 1108726739 ISBN-13(EAN): 9781108726733
Издательство: Cambridge Academ
Рейтинг:
Цена: 2917 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This Element presents one of the most recent developments in network science in a highly accessible style. This Element will be of interest to interdisciplinary scientists working in network science, in addition to mathematicians working in discrete topology and geometry and physicists working in quantum gravity.

Hands-on mathematics for deep learning

Автор: Dawani, Jay
Название: Hands-on mathematics for deep learning
ISBN: 1838647295 ISBN-13(EAN): 9781838647292
Издательство: Неизвестно
Рейтинг:
Цена: 8942 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Ticket to Ride First Journey, a family-friendly introduction to the Ticket to Ride series. The game features a board of Europe, with shorter routes and new whimsical illustrations in every city. With this simpler version of Ticket to Ride, younger players and beginners alike can take their first steps in the train game series.Although rules are simplified and game objectives made easier, the game remains faithful to what has made Ticket to Ride a success: players race to complete their tickets by capturing routes on the board. The imaginative art on the board and on the ticket cards makes it easy to find cities for even the youngest players, who will be delighted to build their own networks with the big plastic train pieces included in the game.A European map for younger players was the logical next step of the Ticket to Ride series says Alan R. Moon, the game designer. The Europe version of Ticket to Ride is a bestseller in Europe, kids will now have their own version on which they could challenge their parents.Ticket to Ride First Journey is a stand-alone game for 2 to 4 players ages 6 and older, which takes approximately 15-30 minutes to play. It includes 1 Map of Europe, 80 Custom Plastic Trains (20 per player), 72 Train Cards, 32 Ticket Cards, East-to-West Bonus Cards and 1 Golden Ticket.

Artificial intelligence engines

Автор: Stone, James V
Название: Artificial intelligence engines
ISBN: 0956372821 ISBN-13(EAN): 9780956372826
Издательство: Неизвестно
Рейтинг:
Цена: 17787 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: ¢ Are you member of either the management team or the board and do you see the need to adapt your organization to Agile? Do you intend to make the organization more agile? ¢ Are you a coach helping organizations in the transformation to becoming more agile? And are you planning to support this transition using a bottom-up or top-down approach?In this pocket guide you will find a practical approach on how to handle this. Governing an organization in a fast-changing world. And all this although the issues of the day require a lot of your attention and can distract you from the results you want to achieve. The authors consider how to operationalize the organization`s strategic goals and consequently the governance of the entire organization.The authors start from the position of: ¢ Clarifying what has to be achieved in the next quarter in order to achieve the strategic goals. ¢ Introducing a system of short cyclical adjustments, with which you can respond to changing demand from customers or emerging laws and regulations. ¢ Working closely together as management team or board towards the long-term strategic goals and preventing everyone within the organization from following their own goals. ¢ Bringing more focus on the operationalization of the strategy, less `fire-fighting` and greater emphasis on fire prevention. ¢ Getting a clear picture of what prevents your employees from doing their jobs effectively. Will you succeed in removing the barriers holding back your organization? The core message of this pocket guide is application of the FOCUS board. This is a visual approach to management and a strong tool for governing the organization. When this is applied, it will result in collaboration between all layers of the organization, enable short cyclical adjustment and provide a clear focus on achieving the strategic goals.

Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning

Автор: Stone James V.
Название: Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning
ISBN: 0956372813 ISBN-13(EAN): 9780956372819
Издательство: Неизвестно
Рейтинг:
Цена: 6497 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Machine Learning with Neural Networks

Автор: Bernhard Mehlig
Название: Machine Learning with Neural Networks
ISBN: 1108494935 ISBN-13(EAN): 9781108494939
Издательство: Cambridge Academ
Рейтинг:
Цена: 6862 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This modern and self-contained book offers a clear and accessible introduction to the important topic of machine learning with neural networks. Fundamental physical and mathematical principles of the topic are described alongside current applications in science and engineering. Numerous exercises expand and reinforce key concepts within the book.

An Introduction to Universal Artificial Intelligence

Автор: Hutter, Marcus ; Catt, Elliot ; Quarel, David
Название: An Introduction to Universal Artificial Intelligence
ISBN: 1032607025 ISBN-13(EAN): 9781032607023
Издательство: Taylor&Francis
Рейтинг:
Цена: 9436 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

An Introduction to Universal Artificial Intelligence

Автор: Hutter, Marcus ; Catt, Elliot ; Quarel, David
Название: An Introduction to Universal Artificial Intelligence
ISBN: 1032607157 ISBN-13(EAN): 9781032607153
Издательство: Taylor&Francis
Рейтинг:
Цена: 24382 р.
Наличие на складе: Нет в наличии.

Neural Networks

Автор: Raul Rojas
Название: Neural Networks
ISBN: 3540605053 ISBN-13(EAN): 9783540605058
Издательство: Springer
Рейтинг:
Цена: 13009 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced.

Introduction to Graph Neural Networks

Автор: Liu Zhiyuan, Zhou Jie
Название: Introduction to Graph Neural Networks
ISBN: 1681737655 ISBN-13(EAN): 9781681737652
Издательство: Eurospan
Рейтинг:
Цена: 7565 р.
Наличие на складе: Нет в наличии.

Описание: Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks.

However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool.

This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introduced such as graph convolutional networks, graph recurrent networks, graph attention networks, graph residual networks, and several general frameworks. Variants for different graph types and advanced training methods are also included. As for the applications of GNNs, the book categorizes them into structural, non-structural, and other scenarios, and then it introduces several typical models on solving these tasks. Finally, the closing chapters provide GNN open resources and the outlook of several future directions.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия