Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Pattern Recognition: Introduction, Features, Classifiers and Principles, Daniel Stadler, Jurgen Beyerer, Raphael Hagmanns


Варианты приобретения
Цена: 14867.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до:
Ориентировочная дата поставки:
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Daniel Stadler, Jurgen Beyerer, Raphael Hagmanns
Название:  Pattern Recognition: Introduction, Features, Classifiers and Principles
ISBN: 9783111339191
Издательство: Walter de Gruyter
Классификация:



ISBN-10: 311133919X
Обложка/Формат: Paperback
Страницы: 300
Вес: 0.60 кг.
Дата издания: 01.08.2024
Серия: De gruyter textbook
Язык: English
Издание: 2 revised edition
Иллюстрации: 200 illustrations, color
Размер: 171 x 240 x 21
Ключевые слова: Artificial intelligence,Automatic control engineering,Databases,Signal processing, COMPUTERS / Artificial Intelligence / General,COMPUTERS / Data Science / General,TECHNOLOGY & ENGINEERING / Automation,TECHNOLOGY & ENGINEERING / Signals & Signal Processing
Подзаголовок: Introduction, features, classifiers and principles
Рейтинг:
Поставляется из: Германии
Описание:

The book offers a thorough introduction to Pattern Recognition aimed at master and advanced bachelor students of engineering and the natural sciences. Besides classification - the heart of Pattern Recognition - special emphasis is put on features, their typology, their properties and their systematic construction. Additionally, general principles that govern Pattern Recognition are illustrated and explained in a comprehensible way. Rather than presenting a complete overview over the rapidly evolving field, the book is to clarifies the concepts so that the reader can easily understand the underlying ideas and the rationale behind the methods. For this purpose, the mathematical treatment of Pattern Recognition is pushed so far that the mechanisms of action become clear and visible, but not farther. Therefore, not all derivations are driven into the last mathematical detail, as a mathematician would expect it. Ideas of proofs are presented instead of complete proofs. From the authors’ point of view, this concept allows to teach the essential ideas of Pattern Recognition with sufficient depth within a relatively lean book.

Mathematical methods explained thoroughly
Extremely practical approach with many examples
Based on over ten years lecture at Karlsruhe Institute of Technology
For students but also for practitioners




Автор: Alex Pappachen James
Название: Deep learning classifiers with memristive networks.
ISBN: 3030145220 ISBN-13(EAN): 9783030145224
Издательство: Springer
Рейтинг:
Цена: 23757.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: At first, the book offers an overview of neuro-memristive systems, including memristor devices, models, and theory, as well as an introduction to deep learning neural networks such as multi-layer networks, convolution neural networks, hierarchical temporal memory, and long short term memories, and deep neuro-fuzzy networks.

Introduction to graph signal processing /

Автор: Ortega, Antonio,
Название: Introduction to graph signal processing /
ISBN: 1108428134 ISBN-13(EAN): 9781108428132
Издательство: Cambridge Academ
Рейтинг:
Цена: 15418.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An intuitive, accessible text explaining the fundamentals and applications of signal processing on graphs. It covers basic and advanced topics, includes numerous exercises and Matlab examples, and is accompanied online by a solutions manual for instructors, making it essential reading for graduate students, researchers, and industry professionals.

Introduction to pattern recognition and machine learning

Автор: Fieguth, Paul
Название: Introduction to pattern recognition and machine learning
ISBN: 3030959937 ISBN-13(EAN): 9783030959937
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The domains of Pattern Recognition and Machine Learning have experienced exceptional interest and growth, however the overwhelming number of methods and applications can make the fields seem bewildering.

Multiple Classifier Systems

Автор: Friedhelm Schwenker; Fabio Roli; Josef Kittler
Название: Multiple Classifier Systems
ISBN: 3319202472 ISBN-13(EAN): 9783319202471
Издательство: Springer
Рейтинг:
Цена: 6708.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 12th International Workshop on Multiple Classifier Systems, MCS 2015, held in Gunzburg, Germany, in June/July 2015. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.

Introduction to Pattern Recognition: A Matlab Approach,

Автор: Sergios Theodoridis
Название: Introduction to Pattern Recognition: A Matlab Approach,
ISBN: 0123744865 ISBN-13(EAN): 9780123744869
Издательство: Elsevier Science
Рейтинг:
Цена: 5557.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An accompanying manual to "Theodoridis/Koutroumbas, Pattern Recognition", that includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition.

Cambridge series in statistical and probabilistic mathematics

Автор: Vershynin, Roman (university Of Michigan, Ann Arbor)
Название: Cambridge series in statistical and probabilistic mathematics
ISBN: 1108415199 ISBN-13(EAN): 9781108415194
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The data sciences are moving fast, and probabilistic methods are both the foundation and a driver. This highly motivated text brings beginners up to speed quickly and provides working data scientists with powerful new tools. Ideal for a basic second course in probability with a view to data science applications, it is also suitable for self-study.

Introduction to Statistical Pattern Recognition

Автор: Fukunaga, Keinosuke
Название: Introduction to Statistical Pattern Recognition
ISBN: 0122698517 ISBN-13(EAN): 9780122698514
Издательство: Elsevier Science
Рейтинг:
Цена: 8420.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Image Registration

Автор: A. Ardeshir Goshtasby
Название: Image Registration
ISBN: 1447157990 ISBN-13(EAN): 9781447157991
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a detailed guide to image registration. It details the principles behind a vast array of tools and methods as well as compares their performances using synthetic and real data.

Statistical and Neural Classifiers

Автор: Sarunas Raudys
Название: Statistical and Neural Classifiers
ISBN: 1447110714 ISBN-13(EAN): 9781447110712
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: In this book, Sarunas Raudys - an internationally respected researcher in the area - provides an excellent mathematical and applied introduction to how neural network classifiers work and how they should be used..

Combining Pattern Classifiers: Methods and Algorithms

Автор: Ludmila I. Kuncheva
Название: Combining Pattern Classifiers: Methods and Algorithms
ISBN: 1118315235 ISBN-13(EAN): 9781118315231
Издательство: Wiley
Рейтинг:
Цена: 15674.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Combined classifiers, which are central to the ubiquitous performance of pattern recognition and machine learning, are generally considered more accurate than single classifiers.

Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines

Автор: Rad
Название: Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines
ISBN: 9811965528 ISBN-13(EAN): 9789811965524
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions—Chebyshev, Legendre, Gegenbauer, and Jacobi—are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations. On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.

Multiple Classifier Systems

Автор: Zhi-Hua Zhou; Fabio Roli; Josef Kittler
Название: Multiple Classifier Systems
ISBN: 3642380662 ISBN-13(EAN): 9783642380662
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the refereed proceedings of the 11th International Workshop on Multiple Classifier Systems, MCS 2013, held in Nanjing, China, in May 2013. The papers address issues in multiple classifier systems and ensemble methods, including pattern recognition, machine learning, neural network, data mining and statistics.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия