Автор: Nagrath, Preeti Название: Smart Distributed Embedded Systems for Healthcare Applications ISBN: 1032183470 ISBN-13(EAN): 9781032183473 Издательство: Taylor&Francis Рейтинг: Цена: 20671.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book discusses the applications and optimization of emerging smart technologies in the field of healthcare. It further explains different modeling scenarios of the latest technologies in the healthcare system and compares the results to better understand the nature and progress of diseases in the human body, which would ultimately lead to early diagnosis and better treatment and cure of diseases with the help of distributed technology. Covers the implementation models using technologies such as artificial intelligence, machine learning, and deep learning with distributed systems for better diagnosis and treatment of diseases.
Gives in-depth review of technological advancements like advanced sensing technologies such as plasmonic sensors, usage of RFIDs, and electronic diagnostic tools in the field of healthcare engineering. Discusses possibilities of augmented reality and virtual reality interventions for providing unique solutions in medical science, clinical research, psychology, and neurological disorders. Highlights the future challenges and risks involved in the application of smart technologies such as cloud computing, fog computing, IOT, and distributed computing in healthcare.
Confers to utilize the AI and ML and associated aids in healthcare sectors in the post-Covid 19 period to revitalize the medical setup. Contributions included in the book will motivate technological developers and researchers to develop new algorithms and protocols in the healthcare field. It will serve as a vast platform for gaining knowledge regarding healthcare delivery, health- care management, healthcare in governance, and health monitoring approaches using distributed environments.
It will serve as an ideal reference text for graduate students and researchers in diverse engineering fields including electrical, electronics and communication, computer, and biomedical fields.
Описание: The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable - and even, in many cases, more efficient.
Автор: Viral, Rajkumar ; Asija, Divya ; Salkuti, Surender Название: Big Data Analytics Framework for Smart Grids ISBN: 1032392908 ISBN-13(EAN): 9781032392905 Издательство: Taylor&Francis Рейтинг: Цена: 20671.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Ahmed Название: Explainable Artificial Intelligence for Cyber Security ISBN: 3030966321 ISBN-13(EAN): 9783030966324 Издательство: Springer Рейтинг: Цена: 22359.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents that explainable artificial intelligence (XAI) is going to replace the traditional artificial, machine learning, deep learning algorithms which work as a black box as of today. To understand the algorithms better and interpret the complex networks of these algorithms, XAI plays a vital role. In last few decades, we have embraced AI in our daily life to solve a plethora of problems, one of the notable problems is cyber security. In coming years, the traditional AI algorithms are not able to address the zero-day cyber attacks, and hence, to capitalize on the AI algorithms, it is absolutely important to focus more on XAI. Hence, this book serves as an excellent reference for those who are working in cyber security and artificial intelligence.
Автор: Mishra Название: Explainable AI Recipes ISBN: 1484290283 ISBN-13(EAN): 9781484290286 Издательство: Springer Рейтинг: Цена: 4890.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Understand how to use Explainable AI (XAI) libraries and build trust in AI and machine learning models. This book utilizes a problem-solution approach to explaining machine learning models and their algorithms. The book starts with model interpretation for supervised learning linear models, which includes feature importance, partial dependency analysis, and influential data point analysis for both classification and regression models. Next, it explains supervised learning using non-linear models and state-of-the-art frameworks such as SHAP values/scores and LIME for local interpretation. Explainability for time series models is covered using LIME and SHAP, as are natural language processing-related tasks such as text classification, and sentiment analysis with ELI5, and ALIBI. The book concludes with complex model classification and regression-like neural networks and deep learning models using the CAPTUM framework that shows feature attribution, neuron attribution, and activation attribution. After reading this book, you will understand AI and machine learning models and be able to put that knowledge into practice to bring more accuracy and transparency to your analyses. What You Will Learn * Create code snippets and explain machine learning models using Python * Leverage deep learning models using the latest code with agile implementations * Build, train, and explain neural network models designed to scale * Understand the different variants of neural network models Who This Book Is For AI engineers, data scientists, and software developers interested in XAI
Описание: This book presents that explainable artificial intelligence (XAI) is going to replace the traditional artificial, machine learning, deep learning algorithms which work as a black box as of today. To understand the algorithms better and interpret the complex networks of these algorithms, XAI plays a vital role. In last few decades, we have embraced AI in our daily life to solve a plethora of problems, one of the notable problems is cyber security. In coming years, the traditional AI algorithms are not able to address the zero-day cyber attacks, and hence, to capitalize on the AI algorithms, it is absolutely important to focus more on XAI. Hence, this book serves as an excellent reference for those who are working in cyber security and artificial intelligence.
Автор: Markus Kr?tzsch; Daria Stepanova Название: Reasoning Web. Explainable Artificial Intelligence ISBN: 3030314227 ISBN-13(EAN): 9783030314224 Издательство: Springer Рейтинг: Цена: 8104.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.
Автор: Gianfagna Leonida, Di Cecco Antonio Название: Explainable AI with Python ISBN: 3030686396 ISBN-13(EAN): 9783030686390 Издательство: Springer Рейтинг: Цена: 9781.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Model-agnostic methods for XAI are shown to produce explanations without relying on ML models internals that are "opaque." Using examples from Computer Vision, the authors then look at explainable models for Deep Learning and prospective methods for the future.
Название: Explainable agency in artificial intelligence ISBN: 1032392584 ISBN-13(EAN): 9781032392585 Издательство: Taylor&Francis Рейтинг: Цена: 7654.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Longo Название: Explainable Artificial Intelligence ISBN: 3031440668 ISBN-13(EAN): 9783031440663 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Поставка под заказ.
Описание: Chapters “Finding Spurious Correlations with Function-Semantic Contrast Analysis” and “Explaining Socio-Demographic and Behavioral Patterns of Vaccination Against the Swine Flu (H1N1) Pandemic” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Описание: The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations.
Автор: Tulli, Silvia ; AHA, David W Название: Explainable Agency in Artificial Intelligence: Research and Practice ISBN: 1032409134 ISBN-13(EAN): 9781032409139 Издательство: Taylor&Francis Рейтинг: Цена: 21437.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru