Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Video Object Segmentation, Xu


Варианты приобретения
Цена: 5589.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Xu
Название:  Video Object Segmentation
ISBN: 9783031446559
Издательство: Springer
Классификация:




ISBN-10: 3031446550
Обложка/Формат: Hardback
Страницы: 187
Вес: 0.51 кг.
Дата издания: 30.12.2023
Серия: Synthesis Lectures on Computer Vision
Язык: English
Издание: 1st ed. 2024
Иллюстрации: 62 illustrations, color; 2 illustrations, black and white; viii, 187 p. 64 illus., 62 illus. in color.
Размер: 240 x 168
Основная тема: Computer Science
Подзаголовок: Tasks, datasets, and methods
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book provides a thorough overview of recent progress in video object segmentation, providing researchers and industrial practitioners with thorough information on the most important problems and developed technologies in the area. Video segmentation is a fundamental topic for video understanding in computer vision. Segmenting unique objects in a given video is useful for a variety of applications, including video conference, video editing, surveillance, and autonomous driving. Given the revolution of deep learning in computer vision problems, numerous new tasks, datasets, and methods have been recently proposed in the domain of segmentation. The book includes these recent results and findings in large-scale video object segmentation as well as benchmarks in large-scale human-centric video analysis in complex events. The authors provide readers with a comprehensive understanding of the challenges involved in video object segmentation, as well as the most effective methods for resolving them.
Дополнительное описание: Introduction.- VOS.- YouTubeVOS Challenges.



Image Co-segmentation

Автор: Hati
Название: Image Co-segmentation
ISBN: 9811985693 ISBN-13(EAN): 9789811985690
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book presents and analyzes methods to perform image co-segmentation. In this book, the authors describe efficient solutions to this problem ensuring robustness and accuracy, and provide theoretical analysis for the same. Six different methods for image co-segmentation are presented. These methods use concepts from statistical mode detection, subgraph matching, latent class graph, region growing, graph CNN, conditional encoder–decoder network, meta-learning, conditional variational encoder–decoder, and attention mechanisms. The authors have included several block diagrams and illustrative examples for the ease of readers. This book is a highly useful resource to researchers and academicians not only in the specific area of image co-segmentation but also in related areas of image processing, graph neural networks, statistical learning, and few-shot learning.

Semantic Video Object Segmentation for Content-Based Multimedia Applications

Автор: Ju Guo; C.-C. Jay Kuo
Название: Semantic Video Object Segmentation for Content-Based Multimedia Applications
ISBN: 1461355869 ISBN-13(EAN): 9781461355861
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Semantic Video Object Segmentation for Content-Based Multimedia Applications provides a thorough review of state-of-the-art techniques as well as describing several novel ideas and algorithms for semantic object extraction from image sequences.

Medical Image Recognition, Segmentation And Parsing

Автор: Zhou,S. Kevin
Название: Medical Image Recognition, Segmentation And Parsing
ISBN: 0128025816 ISBN-13(EAN): 9780128025819
Издательство: Elsevier Science
Рейтинг:
Цена: 18022.00 р.
Наличие на складе: Поставка под заказ.

Video Segmentation and Its Applications

Автор: King Ngi Ngan; Hongliang Li
Название: Video Segmentation and Its Applications
ISBN: 1489994661 ISBN-13(EAN): 9781489994660
Издательство: Springer
Рейтинг:
Цена: 16977.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the latest advances in video segmentation and analysis techniques and covers the theoretical approaches, real applications and methods developed in the computer vision and video analysis community.

Data Segmentation and Model Selection for Computer Vision

Автор: Alireza Bab-Hadiashar; David Suter
Название: Data Segmentation and Model Selection for Computer Vision
ISBN: 1468495089 ISBN-13(EAN): 9781468495089
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This edited volume explores several issues relating to parametric segmentation including robust operations, model selection criteria and automatic model selection, plus 2D and 3D scene segmentation.

Statistical Atlases and Computational Models of the Heart. Multi-Sequence Cmr Segmentation, Crt-Epiggy and LV Full Quantification Challenges: 10th Int

Автор: Pop Mihaela, Sermesant Maxime, Camara Oscar
Название: Statistical Atlases and Computational Models of the Heart. Multi-Sequence Cmr Segmentation, Crt-Epiggy and LV Full Quantification Challenges: 10th Int
ISBN: 303039073X ISBN-13(EAN): 9783030390730
Издательство: Springer
Рейтинг:
Цена: 10340.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Regular Papers.- Multi-Sequence CMR Segmentation Challenge.- CRT-EPiggy Challenge.- LV Full Quantification Challenge.

Head and Neck Tumor Segmentation: First Challenge, Hecktor 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 2020, Proceedings

Автор: Andrearczyk Vincent, Oreiller Valentin, Depeursinge Adrien
Название: Head and Neck Tumor Segmentation: First Challenge, Hecktor 2020, Held in Conjunction with Miccai 2020, Lima, Peru, October 4, 2020, Proceedings
ISBN: 3030671933 ISBN-13(EAN): 9783030671938
Издательство: Springer
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the First 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020.

Fourier Vision

Автор: David Vernon
Название: Fourier Vision
ISBN: 1461355419 ISBN-13(EAN): 9781461355410
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Exploiting the relative motion between figure and ground, this technique deals explicitly with the separation of additive signals and makes no assumptions about the spatial or spectral content of the images, with segmentation being carried out phasor by phasor in the Fourier domain.

Image Co-segmentation

Автор: Hati
Название: Image Co-segmentation
ISBN: 9811985723 ISBN-13(EAN): 9789811985720
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents and analyzes methods to perform image co-segmentation. In this book, the authors describe efficient solutions to this problem ensuring robustness and accuracy, and provide theoretical analysis for the same. Six different methods for image co-segmentation are presented. These methods use concepts from statistical mode detection, subgraph matching, latent class graph, region growing, graph CNN, conditional encoder–decoder network, meta-learning, conditional variational encoder–decoder, and attention mechanisms. The authors have included several block diagrams and illustrative examples for the ease of readers. This book is a highly useful resource to researchers and academicians not only in the specific area of image co-segmentation but also in related areas of image processing, graph neural networks, statistical learning, and few-shot learning.

Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI C

Автор: Puyol Antуn Esther, Pop Mihaela, Martнn-Isla Carlos
Название: Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI C
ISBN: 3030937216 ISBN-13(EAN): 9783030937218
Издательство: Springer
Рейтинг:
Цена: 10480.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multi-atlas segmentation of the aorta from 4D flow MRI: comparison of several fusion strategie.- Quality-aware Cine Cardiac MRI Reconstruction and Analysis from Undersampled k-space Data.- Coronary Artery Centerline Refinement using GCN Trained with Synthetic Data.- Novel imaging biomarkers to evaluate heart dysfunction post-chemotherapy: a preclinical MRI feasibility study.- A bi-atrial statistical shape model as a basis to classify left atrial enlargement from simulated and clinical 12-lead ECGs.- Vessel Extraction and Analysis of Aortic Dissection.- The Impact of Domain Shift on Left and Right Ventricle Segmentation in Short Axis Cardiac MR Images.- Characterizing myocardial ischemia and reperfusion patterns with hierarchical manifold learning.- Generating Subpopulation-Specific Biventricular Anatomy Models Using Conditional Point Cloud Variational Autoencoders.- Improved AI-based Segmentation of Apical and Basal Slices from Clinical Cine CMR.- Mesh Convolutional Neural Networks for Wall Shear Stress Estimation in 3D Artery Models.- Hierarchical multi-modality prediction model to assess obesity-related remodelling.- Neural Angular Plaque Characterization: Automated Quantification of Polar Distributionfor Plaque Composition.- Simultaneous Segmentation and Motion Estimation of Left Ventricular Myocardium in 3D Echocardiography using Multi-task Learning.- Statistical shape analysis of the tricuspid valve in hypoplastic left heart syndrome.- An Unsupervised 3D Recurrent Neural Networkfor Slice Misalignment Correction in CardiacMR Imaging.- Unsupervised Multi-Modality RegistrationNetwork based on Spatially Encoded Gradient Information.- In-silico analysis of device-related thrombosis for different left atrial appendage occluder settings.- Valve flattening with functional biomarkers for the assessment of mitral valve repair.- Multi-modality cardiac segmentation via mixing domains for unsupervised adaptation.- Uncertainty-Aware Training for Cardiac Resynchronisation Therapy Response Prediction.- Cross-domain Artefact Correction of Cardiac MRI.- Detection and Classification of Coronary Artery Plaques in Coronary Computed Tomography Angiography Using 3D CNN.- Predicting 3D Cardiac Deformations With Point Cloud Autoencoders.- Influence of morphometric and mechanical factors in thoracic aorta finite element modeling.- Right Ventricle Segmentation via Registration and Multi-input Modalities in Cardiac Magnetic Resonance Imaging from Multi-Disease, Multi-View and Multi-Center.- Using MRI-specific Data Augmentation to Enhance the Segmentation of Right Ventricle in Multi-disease, Multi-center and Multi-view Cardiac MRI.- Right Ventricular Segmentation from Short- and Long-Axis MRIs via Information Transition.- Tempera: Spatial Transformer Feature Pyramid Network for Cardiac MRI Segmentation.- Multi-view SA-LA Net: A framework for simultaneous segmentation of RV on multi-view cardiac MR Images.- Right ventricular segmentation in multi-view cardiac MRI using a unified U-net model.- Deformable Bayesian Convolutional Networks for Disease-Robust Cardiac MRI Segmentation.- Consistency based Co-Segmentation for Multi-View Cardiac MRI using Vision Transformer.- Refined Deep Layer Aggregation for Multi-Disease, Multi-View & Multi-Center Cardiac MR Segmentation.- A Multi-View Cross-Over Attention U-Net Cascade With Fourier Domain Adaptation For Multi-Domain Cardiac MRI Segmentation.- Multi-Disease, Multi-View & Multi-Center Right Ventricular Segmentation in Cardiac MRI using Efficient Late-Ensemble Deep Learning Approach.- Automated Segmentation of the Right Ventricle from Magnetic Resonance Imaging Using Deep Convolutional Neural Networks.- 3D right ventricle reconstruction from 2D U-Net segmentation of sparse short-axis and 4-chamber cardiac cine MRI views.- Late Fusion U-Net with GAN-based Augmentation for Generalizable Cardiac MRI Segmentation.- Using Out-of-Distribution Detection for Model Refinement in Cardiac Im

Advanced Algorithmic Approaches to Medical Image Segmentation

Автор: S. Kamaledin Setarehdan; Sameer Singh
Название: Advanced Algorithmic Approaches to Medical Image Segmentation
ISBN: 1447110439 ISBN-13(EAN): 9781447110439
Издательство: Springer
Рейтинг:
Цена: 27950.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Medical imaging is an important topic and plays a key role in robust diagnosis and patient care. It has experienced an explosive growth over the last few years due to imaging modalities such as X-rays, computed tomography (CT), magnetic resonance (MR) imaging, and ultrasound.

Segmentation and Separation of Overlapped Latent Fingerprints

Автор: Branka Stojanovi?; Oge Marques; Aleksandar Ne?kovi
Название: Segmentation and Separation of Overlapped Latent Fingerprints
ISBN: 3030233634 ISBN-13(EAN): 9783030233631
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This Springerbrief presents an overview of problems and technologies behind segmentation and separation of overlapped latent fingerprints, which are two fundamental steps in the context of fingerprint matching systems. It addresses five main aspects: (1) the need for overlapped latent fingerprint segmentation and separation in the context of fingerprint verification systems; (2) the different datasets available for research on overlapped latent fingerprints; (3) selected algorithms and techniques for segmentation of overlapped latent fingerprints; (4) selected algorithms and techniques for separation of overlapped latent fingerprints; and (5) the use of deep learning techniques for segmentation and separation of overlapped latent fingerprints.
By offering a structured overview of the most important approaches currently available, putting them in perspective, and suggesting numerous resources for further exploration, this book gives its readers a clear path for learning new topics and engaging in related research. Written from a technical perspective, and yet using language and terminology accessible to non-experts, it describes the technologies, introduces relevant datasets, highlights the most important research results in each area, and outlines the most challenging open research questions.
This Springerbrief targets researchers, professionals and advanced-level students studying and working in computer science, who are interested in the field of fingerprint matching and biometrics. Readers who want to deepen their understanding of specific topics will find more than one hundred references to additional sources of related information.

ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия