Описание: The scope of this book is limited to heuristics, metaheuristics, and approximate methods and algorithms as applied to planning and scheduling problems.
Автор: Arora, Ritu Название: Combinatorial Optimization Under Uncertainty ISBN: 1032316586 ISBN-13(EAN): 9781032316581 Издательство: Taylor&Francis Рейтинг: Цена: 12554.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Johann Dr?o; A. Chatterjee; Alain P?trowski; Patri Название: Metaheuristics for Hard Optimization ISBN: 364206194X ISBN-13(EAN): 9783642061943 Издательство: Springer Рейтинг: Цена: 13969.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Contains case studies from engineering and operations researchIncludes commented literature for each chapter
Автор: Mauro Birattari Название: Tuning Metaheuristics ISBN: 3642101496 ISBN-13(EAN): 9783642101496 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Metaheuristics are a relatively new but already established approachto c- binatorial optimization. A metaheuristic is a generic algorithmic template that can be used for ?nding high quality solutions of hard combinatorial - timization problems. To arrive at a functioning algorithm, a metaheuristic needs to be con?gured: typically some modules need to be instantiated and someparametersneedto betuned.Icallthese twoproblems"structural"and "parametric" tuning, respectively. More generally, I refer to the combination of the two problems as "tuning." Tuning is crucial to metaheuristic optimization both in academic research andforpracticalapplications.Nevertheless, relativelylittle researchhasbeen devoted to the issue. This book shows that the problem of tuning a me- heuristic can be described and solved as a machine learning problem. Using the machine learning perspective, it is possible to give a formal de?nitionofthetuningproblemandtodevelopagenericalgorithmfortuning metaheuristics.Moreover, fromthemachinelearningperspectiveitispossible tohighlightsome?awsinthecurrentresearchmethodologyandtostatesome guidelines for future empirical analysis in metaheuristics research. This book is based on my doctoral dissertation and contains results I have obtained starting from 2001 while working within the Metaheuristics Net- 1 work. During these years I have been a?liated with two research groups: INTELLEKTIK, Technische Universit t Darmstadt, Darmstadt, Germany and IRIDIA, Universit Libre de Bruxelles, Brussels, Belgium. I am the- fore grateful to the research directors of these two groups: Prof. Wolfgang Bibel, Dr. Thomas St tzle, Prof. Philippe Smets, Prof. Hugues Bersini, and Prof. Marco Dorigo.
Автор: Ding, Shuxin Chen, Chen Zhang, Qi Xin, Bin Pardalos, Panos M. (uni Of Florida, Usa) Название: Metaheuristics for resource deployment under uncertainty in complex systems ISBN: 1032065206 ISBN-13(EAN): 9781032065205 Издательство: Taylor&Francis Рейтинг: Цена: 13014.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Metaheuristics for Resource Deployment under Uncertainty in Complex Systems analyzes how to set locations for the deployment of resources to incur the best performance at the lowest cost. Resources can be static nodes and moving nodes while services for a specific area or for customers can be provided. Theories of modeling and solution techniques are used with uncertainty taken into account and real-world applications used.The authors present modeling and metaheuristics for solving resource deployment problems under uncertainty while the models deployed are related to stochastic programming, robust optimization, fuzzy programming, risk management, and single/multi-objective optimization. The resources are heterogeneous and can be sensors and actuators providing different tasks. Both separate and cooperative coverage of the resources are analyzed. Previous research has generally dealt with one type of resource and considers static and deterministic problems, so the book breaks new ground in its analysis of cooperative coverage with heterogeneous resources and the uncertain and dynamic properties of these resources using metaheuristics.This book will help researchers, professionals, academics, and graduate students in related areas to better understand the theory and application of resource deployment problems and theories of uncertainty, including problem formulations, assumptions, and solution methods.
Автор: Mirjalili, Seyedali Название: Handbook of Moth-Flame Optimization Algorithm ISBN: 1032070919 ISBN-13(EAN): 9781032070919 Издательство: Taylor&Francis Рейтинг: Цена: 15312.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Kulkarni Anand J., Siarry Patrick Название: Handbook of AI-based Metaheuristics ISBN: 0367753030 ISBN-13(EAN): 9780367753030 Издательство: Taylor&Francis Рейтинг: Цена: 31390.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications, as well as newly devised metaheuristic algorithms.
Название: Metaheuristic algorithms in industry 4.0 ISBN: 0367698390 ISBN-13(EAN): 9780367698393 Издательство: Taylor&Francis Рейтинг: Цена: 16078.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Metaheuristic Algorithms in Industry 4.0 provides a guiding light to engineers, researchers, students, faculty and other professionals engaged in exploring and implementing industry 4.0 solutions in various systems and processes.
Автор: Maiti Название: Hybrid L1 Adaptive Control ISBN: 303097104X ISBN-13(EAN): 9783030971045 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book details the designing of hybrid control strategies for practical systems containing time varying uncertainties, disturbances, nonlinearities, unknown parameters, unmodelled dynamics, delays, etc., concurrently. In this book, the advantages of different controllers will be brought together to produce superior control performance for the practical systems. Being aware of the advantages of adaptive controller to tackle unknown constant, time varying uncertainties and time varying disturbances, a variant of adaptive controller, namely L1 adaptive controller, is hybridized with other strategies. In this book, to facilitate optimal parameter setting of the basic L1 adaptive controller, stochastic optimization technique will be hybridized with it. The stability of the optimization technique along with the controller will be guaranteed analytically with the help of spectral radius convergence. The proposed method exhibits satisfactory exploration and exploitation capabilities. Again, this book will throw light on tackling nonlinearities along with uncertainties and disturbances by hybridizing fuzzy logic with L1 adaptive controller. The performances of the designed controllers will be compared with different control methodologies to validate their effectiveness. The overall stability of the nonlinear system with the designed controller will be guaranteed with the help of fuzzy Lyapunov function to retain the zonal behaviour of the system. This fuzzy PDC-L1 adaptive controller is efficient to tackle nonlinearities and at the same time cancels unknown constant, time varying uncertainties and time varying disturbances adequately. This book will also contain four simulation case studies to validate fruitfulness of the designed controllers. To demonstrate the superior control ability of these controllers in tackling practical system, three experimental case studies will also be provided.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru