Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Membrane Protein Bioinformatics, 


Варианты приобретения
Цена: 11790.00р.
Кол-во:
 о цене
Наличие: Отсутствует. 
Возможна поставка под заказ. Дата поступления на склад уточняется после оформления заказа


Добавить в корзину
в Мои желания


Название:  Membrane Protein Bioinformatics
ISBN: 9781466573222
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1466573228
Обложка/Формат: Mixed media product
Страницы: 288
Вес: 0.74 кг.
Дата издания: 31.12.2023
Язык: English
Иллюстрации: 120 illustrations, black and white
Размер: 234 x 156
Подзаголовок: A practical introduction
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз


Автор: Artur Lesk
Название: Introduction to Bioinformatics, 5 ed.- Oxford University Press, 2019 ISBN 9780198794141
ISBN: 0198794142 ISBN-13(EAN): 9780198794141
Издательство: Oxford Academ
Рейтинг:
Цена: 8869.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Active, accessible, and assuming no prior knowledge: the ideal text for biologists encountering bioinformatics for the first time.

Artificial Intelligence and Computational Dynamics for Biomedical Research

Автор: Ankur Saxena, Nicolas Brault
Название: Artificial Intelligence and Computational Dynamics for Biomedical Research
ISBN: 3110761998 ISBN-13(EAN): 9783110761993
Издательство: Walter de Gruyter
Рейтинг:
Цена: 26024.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This work presents the latest development in the field of computational intelligence to advance Big Data and Cloud Computing concerning applications in medical diagnosis. As forum for academia and professionals it covers state-of-the-art research challenges and issues in the digital information & knowledge management and the concerns along with the solutions adopted in these fields.

Structural Bioinformatics of Membrane Proteins

Автор: D. Frishman
Название: Structural Bioinformatics of Membrane Proteins
ISBN: 3709116805 ISBN-13(EAN): 9783709116807
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: With a focus on membrane proteins from the perspective of bioinformatics, this book covers a broad spectrum of topics in evolution, structure, function and bioinformatics of membrane proteins focusing on the most recent experimental results.

Practical Protein Bioinformatics

Автор: Florencio Pazos; M?nica Chagoyen
Название: Practical Protein Bioinformatics
ISBN: 3319127268 ISBN-13(EAN): 9783319127262
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book describes more than 60 web-accessible computational tools for protein analysis and is totally practical, with detailed explanations on how to use these tools and interpret their results and minimal mentions to their theoretical basis (only when that is required for making a better use of them). It covers a wide range of tools for dealing with different aspects of proteins, from their sequences, to their three-dimensional structures, and the biological networks they are immersed in. The selection of tools is based on the experience of the authors that lead a protein bioinformatics facility in a large research centre, with the additional constraint that the tools should be accessible through standard web browsers without requiring the local installation of specific software, command-line tools, etc. The web tools covered include those aimed to retrieve protein information, look for similar proteins, generate pair-wise and multiple sequence alignments of protein sequences, work with protein domains and motifs, study the phylogeny of a family of proteins, retrieve, manipulate and visualize protein three-dimensional structures, predict protein structural features as well as whole three-dimensional structures, extract biological information from protein structures, summarize large protein sets, study protein interaction and metabolic networks, etc. The book is associated to a dynamic web site that will reflect changes in the web addresses of the tools, updates of these, etc. It also contains QR codes that can be scanned with any device to direct its browser to the tool web site. This monograph will be most valuable for researchers in experimental labs without specific knowledge on bioinformatics or computing.

Protein Bioinformatics

Автор: Cathy H. Wu; Cecilia N. Arighi; Karen E. Ross
Название: Protein Bioinformatics
ISBN: 1493967819 ISBN-13(EAN): 9781493967810
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume introduces bioinformatics research methods for proteins, with special focus on protein post-translational modifications (PTMs) and networks.

Protein Engineering Techniques

Автор: Krishna Mohan Poluri; Khushboo Gulati
Название: Protein Engineering Techniques
ISBN: 9811027315 ISBN-13(EAN): 9789811027314
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

Unsupervised Feature Extraction Applied to Bioinformatics

Автор: Y-h. Taguchi
Название: Unsupervised Feature Extraction Applied to Bioinformatics
ISBN: 3030224554 ISBN-13(EAN): 9783030224554
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.

Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
High-Performance Computational Solutions in Protein Bioinformatics

Автор: Dariusz Mrozek
Название: High-Performance Computational Solutions in Protein Bioinformatics
ISBN: 3319069705 ISBN-13(EAN): 9783319069708
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This work focuses on proteins and their structures, protein structure similarity searching at main representation levels and various techniques that can be used to accelerate similarity searches.

Proteomics and Protein-Protein Interactions

Автор: Gabriel Waksman
Название: Proteomics and Protein-Protein Interactions
ISBN: 1489996117 ISBN-13(EAN): 9781489996114
Издательство: Springer
Рейтинг:
Цена: 28732.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Gabriel Waksman Institute of Structural Molecular Biology, Birkbeck and University College London, Malet Street, London WC1E 7HX, United Kingdom Address for correspondence: Professor Gabriel Waksman Institute of Structural Molecular Biology Birkbeck and University College London Malet Street London WC1E 7H United Kingdom Email: g.

Practical Protein Bioinformatics

Автор: Florencio Pazos; M?nica Chagoyen
Название: Practical Protein Bioinformatics
ISBN: 3319381849 ISBN-13(EAN): 9783319381848
Издательство: Springer
Рейтинг:
Цена: 14365.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

INTRODUCTION

1. SEQUENCES
- INTRODUCTION
- REPRESENTING PROTEIN SEQUENCES IN THE COMPUTER Sequence file formats
Sequence format conversion tools
MAIN PROTEIN SEQUENCE DATABASES
BASIC SEQUENCE-BASED CHARACTERISTICS
COMPARE TWO PROTEIN SEQUENCES
Types of pair-wise sequence alignments
FINDING SIMILAR SEQUENCES IN A DATABASE (BASIC)
Which sequence database to search?
BLAST
COMPARE MORE THAN TWO SEQUENCES
Multiple Sequence Alignments: Formats and Conversion
Alignment editing and representation
Summarizing MSAs
FINDING SIMILAR SEQUENCES IN A DATABASE (ADVANCED) Sequence profiles
Iterative profile construction
HMM profile search against a sequence database
HMM profile search against a profile database
PROTEIN MOTIFS, DOMAINS AND FAMILIES
BASIC PHYLOGENY

2. STRUCTURES
INTRODUCTION
Storing protein structures - The PDB file format
MAIN PROTEIN STRUCTURE DATABASES
Classifications of structural domains
STRUCTURE MANIPULATION, VISUALIZATION AND COMPARISON
Structure Manipulation and Visualization
Structure Comparison
PREDICTION OF 1D STRUCTURAL FEATURES
Secondary structure and solvent accessibility
Transmembrane segments
Coiled-coils
Disordered regions
Protein sorting signals
PREDICTING PROTEIN 3D STRUCTURE
Template-based (homology-based approaches)
Template-based (fragment-based approaches)
Model quality checks
ANALYSIS OF PROTEIN STRUCTURE
Mapping conservation
Protein and ligand contacts
Surface clefts, binding pockets, tunnels and internal cavities

3. SYSTEMS
INTRODUCTION
Protein/gene functional annotations
ID conversions
ANNOTATION ENRICHMENT ANALYSIS OF LARGE PROTEINS SETS
PROTEIN INTERACTION NETWORKS
METABOLIC NETWORKS
Retrieve the metabolic-related information associated to a protein of interest
Map a large set of proteins in the metabolome
OTHER BIOLOGICAL NETWORKS

BIBLIOGRAPHY

HOW TO

TOOLS INDEX

Computational Prediction of Protein Complexes from Protein Interaction Networks

Автор: Sriganesh Srihari, Chern Han Yong, Limsoon Wong
Название: Computational Prediction of Protein Complexes from Protein Interaction Networks
ISBN: 1970001526 ISBN-13(EAN): 9781970001525
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 10352.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Complexes of physically interacting proteins constitute fundamental functional units that drive almost all biological processes within cells. A faithful reconstruction of the entire set of protein complexes (the "complexosome") is therefore important not only to understand the composition of complexes but also the higher level functional organization within cells. Advances over the last several years, particularly through the use of high-throughput proteomics techniques, have made it possible to map substantial fractions of protein interactions (the "interactomes") from model organisms including Arabidopsis thaliana (a flowering plant), Caenorhabditis elegans (a nematode), Drosophila melanogaster (fruit fly), and Saccharomyces cerevisiae (budding yeast). These interaction datasets have enabled systematic inquiry into the identification and study of protein complexes from organisms. Computational methods have played a significant role in this context, by contributing accurate, efficient, and exhaustive ways to analyze the enormous amounts of data. These methods have helped to compensate for some of the limitations in experimental datasets including the presence of biological and technical noise and the relative paucity of credible interactions.In this book, we systematically walk through computational methods devised to date (approximately between 2000 and 2016) for identifying protein complexes from the network of protein interactions (the protein-protein interaction (PPI) network). We present a detailed taxonomy of these methods, and comprehensively evaluate them for protein complex identification across a variety of scenarios including the absence of many true interactions and the presence of false-positive interactions (noise) in PPI networks. Based on this evaluation, we highlight challenges faced by the methods, for instance in identifying sparse, sub-, or small complexes and in discerning overlapping complexes, and reveal how a combination of strategies is necessary to accurately reconstruct the entire complexosome.

Computational Prediction of Protein Complexes from Protein Interaction Networks

Автор: Sriganesh Srihari, Chern Han Yong, Limsoon Wong
Название: Computational Prediction of Protein Complexes from Protein Interaction Networks
ISBN: 1970001550 ISBN-13(EAN): 9781970001556
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12860.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Complexes of physically interacting proteins constitute fundamental functional units that drive almost all biological processes within cells. A faithful reconstruction of the entire set of protein complexes (the "complexosome") is therefore important not only to understand the composition of complexes but also the higher level functional organization within cells. Advances over the last several years, particularly through the use of high-throughput proteomics techniques, have made it possible to map substantial fractions of protein interactions (the "interactomes") from model organisms including Arabidopsis thaliana (a flowering plant), Caenorhabditis elegans (a nematode), Drosophila melanogaster (fruit fly), and Saccharomyces cerevisiae (budding yeast). These interaction datasets have enabled systematic inquiry into the identification and study of protein complexes from organisms. Computational methods have played a significant role in this context, by contributing accurate, efficient, and exhaustive ways to analyze the enormous amounts of data. These methods have helped to compensate for some of the limitations in experimental datasets including the presence of biological and technical noise and the relative paucity of credible interactions.In this book, we systematically walk through computational methods devised to date (approximately between 2000 and 2016) for identifying protein complexes from the network of protein interactions (the protein-protein interaction (PPI) network). We present a detailed taxonomy of these methods, and comprehensively evaluate them for protein complex identification across a variety of scenarios including the absence of many true interactions and the presence of false-positive interactions (noise) in PPI networks. Based on this evaluation, we highlight challenges faced by the methods, for instance in identifying sparse, sub-, or small complexes and in discerning overlapping complexes, and reveal how a combination of strategies is necessary to accurately reconstruct the entire complexosome.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия