Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Bayesian Inference for Gene Expression and Proteomics, Edited by Kim-Anh Do


Варианты приобретения
Цена: 11405.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Edited by Kim-Anh Do
Название:  Bayesian Inference for Gene Expression and Proteomics
ISBN: 9780521860925
Издательство: Cambridge Academ
Классификация:






ISBN-10: 052186092X
Обложка/Формат: Hardback
Страницы: 456
Вес: 0.74 кг.
Дата издания: 24.07.2006
Язык: English
Иллюстрации: 22 tables
Размер: 236 x 160 x 29
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: The interdisciplinary nature of bioinformatics presents a research challenge in integrating concepts, methods, software and multiplatform data. Although there have been rapid developments in new technology and an inundation of statistical methods for addressing other types of high-throughput data, such as proteomic profiles that arise from mass spectrometry experiments. This book discusses the development and application of Bayesian methods in the analysis of high-throughput bioinformatics data that arise from medical, in particular, cancer research, as well as molecular and structural biology. The Bayesian approach has the advantage that evidence can be easily and flexibly incorporated into statistical methods. A basic overview of the biological and technical principles behind multi-platform high-throughput experimentation is followed by expert reviews of Bayesian methodology, tools and software for single group inference, group comparisons, classification and clustering, motif discovery and regulatory networks, and Bayesian networks and gene interactions.


Methods for estimation and inference in modern econometrics

Автор: Anatolyev, Stanislav Gospodinov, Nikolay
Название: Methods for estimation and inference in modern econometrics
ISBN: 1439838240 ISBN-13(EAN): 9781439838242
Издательство: Taylor&Francis
Рейтинг:
Цена: 15312.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Methods for Estimation and Inference in Modern Econometrics provides a comprehensive introduction to a wide range of emerging topics, such as generalized empirical likelihood estimation and alternative asymptotics under drifting parameterizations, which have not been discussed in detail outside of highly technical research papers. The book also addresses several problems often arising in the analysis of economic data, including weak identification, model misspecification, and possible nonstationarity. The book's appendix provides a review of some basic concepts and results from linear algebra, probability theory, and statistics that are used throughout the book.





Topics covered include:







  • Well-established nonparametric and parametric approaches to estimation and conventional (asymptotic and bootstrap) frameworks for statistical inference


  • Estimation of models based on moment restrictions implied by economic theory, including various method-of-moments estimators for unconditional and conditional moment restriction models, and asymptotic theory for correctly specified and misspecified models


  • Non-conventional asymptotic tools that lead to improved finite sample inference, such as higher-order asymptotic analysis that allows for more accurate approximations via various asymptotic expansions, and asymptotic approximations based on drifting parameter sequences






Offering a unified approach to studying econometric problems, Methods for Estimation and Inference in Modern Econometrics links most of the existing estimation and inference methods in a general framework to help readers synthesize all aspects of modern econometric theory. Various theoretical exercises and suggested solutions are included to facilitate understanding.

Essential Statistical Inference

Автор: Boos
Название: Essential Statistical Inference
ISBN: 1461448174 ISBN-13(EAN): 9781461448174
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Поставка под заказ.

Описание: A superb resource on statistical inference for researchers or students, this book has R code throughout, including in sample problems, and an appendix of derived notation and formulae. It covers core topics as well as modern aspects such as M-estimation.

Causal Inference for Statistics, Social, and Biomedical Sciences

Автор: Imbens
Название: Causal Inference for Statistics, Social, and Biomedical Sciences
ISBN: 0521885884 ISBN-13(EAN): 9780521885881
Издательство: Cambridge Academ
Рейтинг:
Цена: 8237.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Bayesian inference in statistical analysis

Автор: Box, George E. P. Tiao, George C.
Название: Bayesian inference in statistical analysis
ISBN: 0471574287 ISBN-13(EAN): 9780471574286
Издательство: Wiley
Рейтинг:
Цена: 25494.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designed to form the basis of a graduate course on Bayesian inference, this textbook discusses important general issues of the Bayesian approach. It investigates problems, illustrating the appropriate analysis of mathematical results with numerical examples.

Bayesian Inference

Автор: Harney
Название: Bayesian Inference
ISBN: 3319416421 ISBN-13(EAN): 9783319416427
Издательство: Springer
Рейтинг:
Цена: 13555.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This new edition offers a comprehensive introduction to the analysis of data using Bayes rule. It generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This is particularly useful when the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins, so that the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data.  New sections feature factorizing parameters, commuting parameters,  observables in quantum mechanics, the art of fitting with coherent and with incoherent alternatives and fitting with multinomial distribution. Additional problems and examples help deepen the knowledge.  Requiring no knowledge of quantum mechanics, the book is written on introductory level, with many examples and exercises, for advanced undergraduate and graduate students in the physical sciences, planning to, or working in, fields such as medical physics, nuclear physics, quantum mechanics, and chaos.

Fundamentals of Nonparametric Bayesian Inference

Автор: Ghosal, Subhashis.
Название: Fundamentals of Nonparametric Bayesian Inference
ISBN: 0521878268 ISBN-13(EAN): 9780521878265
Издательство: Cambridge Academ
Рейтинг:
Цена: 12989.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.

Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry

Автор: Datta
Название: Statistical Analysis of Proteomics, Metabolomics, and Lipidomics Data Using Mass Spectrometry
ISBN: 3319458078 ISBN-13(EAN): 9783319458076
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents an overview of computational and statistical design and analysis of mass spectrometry-based proteomics, metabolomics, and lipidomics data. This contributed volume provides an introduction to the special aspects of statistical design and analysis with mass spectrometry data for the new omic sciences. The text discusses common aspects of design and analysis between and across all (or most) forms of mass spectrometry, while also providing special examples of application with the most common forms of mass spectrometry. Also covered are applications of computational mass spectrometry not only in clinical study but also in the interpretation of omics data in plant biology studies.Omics research fields are expected to revolutionize biomolecular research by the ability to simultaneously profile many compounds within either patient blood, urine, tissue, or other biological samples. Mass spectrometry is one of the key analytical techniques used in these new omic sciences. Liquid chromatography mass spectrometry, time-of-flight data, and Fourier transform mass spectrometry are but a selection of the measurement platforms available to the modern analyst. Thus in practical proteomics or metabolomics, researchers will not only be confronted with new high dimensional data types—as opposed to the familiar data structures in more classical genomics—but also with great variation between distinct types of mass spectral measurements derived from different platforms, which may complicate analyses, comparison, and interpretation of results.

A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935

Автор: Hald Anders
Название: A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935
ISBN: 0387464085 ISBN-13(EAN): 9780387464084
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a history of parametric statistical inference, written by one of the most important historians of statistics of the 20th century, Anders Hald. This book can be viewed as a follow-up to his two most recent books, although this current text is much more streamlined and contains new analysis of many ideas and developments. And unlike his other books, which were encyclopedic by nature, this book can be used for a course on the topic, the only prerequisites being a basic course in probability and statistics.The book is divided into five main sections:* Binomial statistical inference;* Statistical inference by inverse probability;* The central limit theorem and linear minimum variance estimation by Laplace and Gauss;* Error theory, skew distributions, correlation, sampling distributions;* The Fisherian Revolution, 1912-1935.Throughout each of the chapters, the author provides lively biographical sketches of many of the main characters, including Laplace, Gauss, Edgeworth, Fisher, and Karl Pearson. He also examines the roles played by DeMoivre, James Bernoulli, and Lagrange, and he provides an accessible exposition of the work of R.A. Fisher.This book will be of interest to statisticians, mathematicians, undergraduate and graduate students, and historians of science.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия