Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Bayesian Inference, Harney


Варианты приобретения
Цена: 13555.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Harney
Название:  Bayesian Inference
ISBN: 9783319416427
Издательство: Springer
Классификация:


ISBN-10: 3319416421
Обложка/Формат: Hardback
Страницы: 243
Вес: 0.56 кг.
Дата издания: 2016
Язык: English
Издание: 2nd ed. 2016
Иллюстрации: 5 tables, color; 3 illustrations, color; 36 illustrations, black and white; xiii, 243 p. 39 illus., 3 illus. in color.
Размер: 234 x 156 x 16
Читательская аудитория: General (us: trade)
Основная тема: Physics
Подзаголовок: Data Evaluation and Decisions
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This new edition offers a comprehensive introduction to the analysis of data using Bayes rule. It generalizes Gaussian error intervals to situations in which the data follow distributions other than Gaussian. This is particularly useful when the observed parameter is barely above the background or the histogram of multiparametric data contains many empty bins, so that the determination of the validity of a theory cannot be based on the chi-squared-criterion. In addition to the solutions of practical problems, this approach provides an epistemic insight: the logic of quantum mechanics is obtained as the logic of unbiased inference from counting data.  New sections feature factorizing parameters, commuting parameters,  observables in quantum mechanics, the art of fitting with coherent and with incoherent alternatives and fitting with multinomial distribution. Additional problems and examples help deepen the knowledge.  Requiring no knowledge of quantum mechanics, the book is written on introductory level, with many examples and exercises, for advanced undergraduate and graduate students in the physical sciences, planning to, or working in, fields such as medical physics, nuclear physics, quantum mechanics, and chaos.
Дополнительное описание: Knowledge an Logic.- Bayes' Theorem.- Probable and Improbable Data.- Descriptions of Distributions I: Real x.- Description of Distributions II: Natural x.- Form Invariance I.- Examples of Invariant Measures.- A Linear Representation of Form Invariance.-



Methods for estimation and inference in modern econometrics

Автор: Anatolyev, Stanislav Gospodinov, Nikolay
Название: Methods for estimation and inference in modern econometrics
ISBN: 1439838240 ISBN-13(EAN): 9781439838242
Издательство: Taylor&Francis
Рейтинг:
Цена: 15312.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Methods for Estimation and Inference in Modern Econometrics provides a comprehensive introduction to a wide range of emerging topics, such as generalized empirical likelihood estimation and alternative asymptotics under drifting parameterizations, which have not been discussed in detail outside of highly technical research papers. The book also addresses several problems often arising in the analysis of economic data, including weak identification, model misspecification, and possible nonstationarity. The book's appendix provides a review of some basic concepts and results from linear algebra, probability theory, and statistics that are used throughout the book.





Topics covered include:







  • Well-established nonparametric and parametric approaches to estimation and conventional (asymptotic and bootstrap) frameworks for statistical inference


  • Estimation of models based on moment restrictions implied by economic theory, including various method-of-moments estimators for unconditional and conditional moment restriction models, and asymptotic theory for correctly specified and misspecified models


  • Non-conventional asymptotic tools that lead to improved finite sample inference, such as higher-order asymptotic analysis that allows for more accurate approximations via various asymptotic expansions, and asymptotic approximations based on drifting parameter sequences






Offering a unified approach to studying econometric problems, Methods for Estimation and Inference in Modern Econometrics links most of the existing estimation and inference methods in a general framework to help readers synthesize all aspects of modern econometric theory. Various theoretical exercises and suggested solutions are included to facilitate understanding.

Causal Inference for Statistics, Social, and Biomedical Sciences

Автор: Imbens
Название: Causal Inference for Statistics, Social, and Biomedical Sciences
ISBN: 0521885884 ISBN-13(EAN): 9780521885881
Издательство: Cambridge Academ
Рейтинг:
Цена: 8237.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Essential Statistical Inference

Автор: Boos
Название: Essential Statistical Inference
ISBN: 1461448174 ISBN-13(EAN): 9781461448174
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Поставка под заказ.

Описание: A superb resource on statistical inference for researchers or students, this book has R code throughout, including in sample problems, and an appendix of derived notation and formulae. It covers core topics as well as modern aspects such as M-estimation.

Bayesian inference in statistical analysis

Автор: Box, George E. P. Tiao, George C.
Название: Bayesian inference in statistical analysis
ISBN: 0471574287 ISBN-13(EAN): 9780471574286
Издательство: Wiley
Рейтинг:
Цена: 25494.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designed to form the basis of a graduate course on Bayesian inference, this textbook discusses important general issues of the Bayesian approach. It investigates problems, illustrating the appropriate analysis of mathematical results with numerical examples.

Bayesian Inference for Gene Expression and Proteomics

Автор: Edited by Kim-Anh Do
Название: Bayesian Inference for Gene Expression and Proteomics
ISBN: 052186092X ISBN-13(EAN): 9780521860925
Издательство: Cambridge Academ
Рейтинг:
Цена: 11405.00 р.
Наличие на складе: Поставка под заказ.

Описание: The interdisciplinary nature of bioinformatics presents a research challenge in integrating concepts, methods, software and multiplatform data. Although there have been rapid developments in new technology and an inundation of statistical methods for addressing other types of high-throughput data, such as proteomic profiles that arise from mass spectrometry experiments. This book discusses the development and application of Bayesian methods in the analysis of high-throughput bioinformatics data that arise from medical, in particular, cancer research, as well as molecular and structural biology. The Bayesian approach has the advantage that evidence can be easily and flexibly incorporated into statistical methods. A basic overview of the biological and technical principles behind multi-platform high-throughput experimentation is followed by expert reviews of Bayesian methodology, tools and software for single group inference, group comparisons, classification and clustering, motif discovery and regulatory networks, and Bayesian networks and gene interactions.

Bayesian Inference for Probabilistic Risk Assessment

Автор: Dana Kelly; Curtis Smith
Название: Bayesian Inference for Probabilistic Risk Assessment
ISBN: 1447127080 ISBN-13(EAN): 9781447127086
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book synthesizes significant recent advances in the use of risk analysis in many government agencies and private corporations, providing a Bayesian foundation for framing probabilistic problems and performing inference on these problems.

Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science

Автор: Franco Taroni,Alex Biedermann,Silvia Bozza,Paolo G
Название: Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science
ISBN: 0470979739 ISBN-13(EAN): 9780470979730
Издательство: Wiley
Рейтинг:
Цена: 11397.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: "This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation" Dr.

Fundamentals of Nonparametric Bayesian Inference

Автор: Ghosal, Subhashis.
Название: Fundamentals of Nonparametric Bayesian Inference
ISBN: 0521878268 ISBN-13(EAN): 9780521878265
Издательство: Cambridge Academ
Рейтинг:
Цена: 12989.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Written by top researchers, this self-contained text is the authoritative account of Bayesian nonparametrics, a nearly universal framework for inference in statistics and machine learning, with practical use in all areas of science, including economics and biostatistics. Appendices with prerequisites and numerous exercises support its use for graduate courses.

Probability Theory and Statistical Inference

Название: Probability Theory and Statistical Inference
ISBN: 0521424089 ISBN-13(EAN): 9780521424080
Издательство: Cambridge Academ
Рейтинг:
Цена: 7285.00 р.
Наличие на складе: Поставка под заказ.

Описание: This major new textbook from a distinguished econometrician is intended for students taking introductory courses in probability theory and statistical inference. No prior knowledge other than a basic familiarity with descriptive statistics is assumed. The primary objective of this book is to establish the framework for the empirical modelling of observational (non-experimental) data. This framework known as 'Probabilistic Reduction' is formulated with a view to accommodating the peculiarities of observational (as opposed to experimental) data in a unifying and logically coherent way. Probability Theory and Statistical Inference differs from traditional textbooks in so far as it emphasizes concepts, ideas, notions and procedures which are appropriate for modelling observational data. Aimed at students at second-year undergraduate level and above studying econometrics and economics, this textbook will also be useful for students in other disciplines which make extensive use of observational data, including finance, biology, sociology and psychology and climatology.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия