Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

The bayesian choice, Robert


Варианты приобретения
Цена: 9083.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Robert
Название:  The bayesian choice
Перевод названия: Байесовский классификатор
ISBN: 9780387715988
Издательство: Springer
Классификация:
ISBN-10: 0387715983
Обложка/Формат: Paperback
Страницы: 632
Вес: 0.87 кг.
Дата издания: 05.07.2007
Серия: From Decision-Theoretic Foundations to Computational Implementation
Язык: English
Издание: 2nd ed. 2001. 2nd pr
Иллюстрации: Xxiv, 606 p.
Размер: 242 x 162 x 40
Читательская аудитория: Postgraduate, research & scholarly
Подзаголовок: From decision-theoretic foundations to computational implementation
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This is an introduction to Bayesian statistics and decision theory, including advanced topics such as Monte Carlo methods. This new edition contains several revised chapters and a new chapter on model choice.


Introduction to Bayesian Econometrics

Автор: Greenberg
Название: Introduction to Bayesian Econometrics
ISBN: 1107015316 ISBN-13(EAN): 9781107015319
Издательство: Cambridge Academ
Рейтинг:
Цена: 8078.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook is an introduction to econometrics from the Bayesian viewpoint. New material includes a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The R programming language is also emphasized.

Monte Carlo Methods in Bayesian Computation

Автор: Chen Ming-Hui, Shao Qi-Man, Ibrahim Joseph G.
Название: Monte Carlo Methods in Bayesian Computation
ISBN: 0387989358 ISBN-13(EAN): 9780387989358
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines advanced Bayesian computational methods. It presents methods for sampling from posterior distributions and discusses how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples. This book examines each of these issues in detail and heavily focuses on computing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo methods for estimation of posterior quantities, improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss computions involving model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches.The book presents an equal mixture of theory and applications involving real data. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.Ming-Hui Chen is Associate Professor of Mathematical Sciences at Worcester Polytechnic Institute, Qu-Man Shao is Assistant Professor of Mathematics at the University of Oregon. Joseph G. Ibrahim is Associate Professor of Biostatistics at the Harvard School of Public Health and Dana-Farber Cancer Institute.

Bayesian Reasoning and Machine Learning

Автор: Barber
Название: Bayesian Reasoning and Machine Learning
ISBN: 0521518148 ISBN-13(EAN): 9780521518147
Издательство: Cambridge Academ
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This practical introduction for final-year undergraduate and graduate students is ideally suited to computer scientists without a background in calculus and linear algebra. Numerous examples and exercises are provided. Additional resources available online and in the comprehensive software package include computer code, demos and teaching materials for instructors.

Bayesian Data Analysis, Third Edition

Автор: Gelman
Название: Bayesian Data Analysis, Third Edition
ISBN: 1439840954 ISBN-13(EAN): 9781439840955
Издательство: Taylor&Francis
Рейтинг:
Цена: 11088.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Winner of the 2016 De Groot Prize from the International Society for Bayesian Analysis Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Bayesian inference in statistical analysis

Автор: Box, George E. P. Tiao, George C.
Название: Bayesian inference in statistical analysis
ISBN: 0471574287 ISBN-13(EAN): 9780471574286
Издательство: Wiley
Рейтинг:
Цена: 25494.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Designed to form the basis of a graduate course on Bayesian inference, this textbook discusses important general issues of the Bayesian approach. It investigates problems, illustrating the appropriate analysis of mathematical results with numerical examples.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия