Methods Matter: Improving Causal Inference in Educational and Social Science Research, Murnane Richard J., Willett John B.
Автор: Morgan Название: Counterfactuals and Causal Inference ISBN: 1107694167 ISBN-13(EAN): 9781107694163 Издательство: Cambridge Academ Рейтинг: Цена: 5702.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Cause-and-effect questions are the motivation for most research in the social, demographic, and health sciences. The counterfactual approach to causal analysis represents a unified framework for the prosecution of these questions. This second edition aims to convince more social scientists to take this approach when analyzing these core empirical questions.
Автор: Rohlfing Название: Case Studies and Causal Inference ISBN: 0230240704 ISBN-13(EAN): 9780230240704 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A discussion of the case study method which develops an integrative framework for causal inference in small-n research. This framework is applied to research design tasks such as case selection and process tracing. The book presents the basics, state-of-the-art and arguments for improving the case study method and empirical small-n research.
Автор: Di Battista Название: Topics on Methodological and Applied Statistical Inference ISBN: 3319440926 ISBN-13(EAN): 9783319440927 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book brings together selected peer-reviewed contributions from various research fields in statistics, and highlights the diverse approaches and analyses related to real-life phenomena.
Автор: Henriette Engelhardt; Hans-Peter Kohler; Alexia F? Название: Causal Analysis in Population Studies ISBN: 9048182328 ISBN-13(EAN): 9789048182329 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The counterfactual approach to estimate effects of causes from quasi-experimental data or from observational studies was first proposed by Rubin in 1974 and further developed by James Heckman and others.This book presents both theoretical contributions and empirical applications of the counterfactual approach to causal inference.
Автор: Federica Russo Название: Causality and Causal Modelling in the Social Sciences ISBN: 9048179963 ISBN-13(EAN): 9789048179961 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This investigation into causal modelling presents the rationale of causality; i.e. what guides reasoning in causal modeling. In contrast to the dominant paradigm, it argues that causal models are governed by a variation, rather than regularity or invariance.
Автор: Jeliazkov Ivan Название: Bayesian Inference in the Social Sciences ISBN: 1118771214 ISBN-13(EAN): 9781118771211 Издательство: Wiley Рейтинг: Цена: 17733.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Bayesian Inference in the Social Sciences builds upon the recent growth in Bayesian methodology and examines an array of topics in model formulation, estimation, and applications. Particular emphasis is placed on an interdisciplinary coverage, model checking, and modern computational tools such as Markov chain Monte Carlo.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Описание: Cause-and-effect questions are the motivation for most research in the social, demographic, and health sciences. The counterfactual approach to causal analysis represents a unified framework for the prosecution of these questions. This second edition aims to convince more social scientists to take this approach when analyzing these core empirical questions.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru