Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Commercial Data Mining, David Nettleton


Варианты приобретения
Цена: 6230.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: David Nettleton
Название:  Commercial Data Mining
Перевод названия: Дэвид Неттлтон: Коммерческое осмысление данных
ISBN: 9780124166028
Издательство: Elsevier Science
Классификация:
ISBN-10: 0124166024
Обложка/Формат: Paperback
Страницы: 304
Вес: 0.51 кг.
Дата издания: 29.03.2014
Серия: The savvy manager`s guides
Язык: English
Размер: 224 x 152 x 18
Читательская аудитория: Professional & vocational
Подзаголовок: Processing, analysis and modeling for predictive analytics projects
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Европейский союз
Описание: Helps you learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. This book guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling.


Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking

Автор: Foster Provost
Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking
ISBN: 1449361323 ISBN-13(EAN): 9781449361327
Издательство: Wiley
Рейтинг:
Цена: 6334.00 р.
Наличие на складе: Есть (1 шт.)
Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 8695.00 р.
Наличие на складе: Поставка под заказ.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Data Mining: The Textbook

Автор: С.Aggarwal
Название: Data Mining: The Textbook
ISBN: 3319141414 ISBN-13(EAN): 9783319141411
Издательство: Springer
Рейтинг:
Цена: 9781.00 р.
Наличие на складе: Поставка под заказ.

Описание: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9033.00 р.
Наличие на складе: Поставка под заказ.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Matrix Methods in Data Mining and Pattern Recognition

Автор: Lars Eld?n
Название: Matrix Methods in Data Mining and Pattern Recognition
ISBN: 0898716268 ISBN-13(EAN): 9780898716269
Издательство: Cambridge Academ
Рейтинг:
Цена: 9029.00 р.
Наличие на складе: Поставка под заказ.

Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.

Data Mining: Concepts and Techniques,

Автор: Jiawei Han
Название: Data Mining: Concepts and Techniques,
ISBN: 0123814790 ISBN-13(EAN): 9780123814791
Издательство: Elsevier Science
Рейтинг:
Цена: 9720.00 р.
Наличие на складе: Поставка под заказ.

Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия