Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Data Mining: The Textbook, С.Aggarwal



Варианты приобретения
Цена: 10713р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 4 апр 2025
Ориентировочная дата поставки: Июнь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: С.Aggarwal
Название:  Data Mining: The Textbook
Перевод названия: С. Аггарвол: Сбор данных. Курс лекций
ISBN: 9783319141411
Издательство: Springer
Классификация:
ISBN-10: 3319141414
Обложка/Формат: Hardback
Страницы: 724
Вес: 1.594 кг.
Дата издания: 2015
Язык: English
Иллюстрации: 7 black & white illustrations, 173 colour illustrations, 25 black & white tables, biography
Размер: 191 x 267 x 47
Читательская аудитория: Professional & vocational
Подзаголовок: The textbook
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.


Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking

Автор: Foster Provost
Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking
ISBN: 1449361323 ISBN-13(EAN): 9781449361327
Издательство: Wiley
Рейтинг:
Цена: 6862 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.

Mining Imperfect Data

Автор: Ronald K. Pearson
Название: Mining Imperfect Data
ISBN: 0898715822 ISBN-13(EAN): 9780898715828
Издательство: Eurospan
Рейтинг:
Цена: 13514 р.
Наличие на складе: Невозможна поставка.

Описание: This book thoroughly discusses the varying problems that occur in data mining, including their sources, consequences, detection, and treatment. Specific strategies for data pretreatment and analytical validation that are broadly applicable are described, making them useful in conjunction with most data mining analysis methods. Examples illustrate the performance of the pretreatment and validation methods in a variety of situations. The book, which deals with a wider range of data anomalies than are usually treated, includes a discussion of detecting anomalies through generalized sensitivity analysis (GSA), a process of identifying inconsistencies using systematic and extensive comparisons of results obtained by analysis of exchangeable datasets or subsets. Real data is made extensive use of, both in the form of a detailed analysis of a few real datasets and various published examples. A succinct introduction to functional equations illustrates their utility in describing various forms of qualitative behavior for useful data characterizations.

Lecture notes in data mining

Автор: Berry
Название: Lecture notes in data mining
ISBN: 9812568026 ISBN-13(EAN): 9789812568021
Издательство: World Scientific Publishing
Рейтинг:
Цена: 16817 р.
Наличие на складе: Невозможна поставка.

Описание: Contains lectures which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. This work lays a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees.

Commercial Data Mining

Автор: David Nettleton
Название: Commercial Data Mining
ISBN: 0124166024 ISBN-13(EAN): 9780124166028
Издательство: Elsevier Science
Рейтинг:
Цена: 6749 р.
Наличие на складе: Нет в наличии.

Описание: Helps you learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. This book guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling.

Data Mining: Concepts and Techniques,

Автор: Jiawei Han
Название: Data Mining: Concepts and Techniques,
ISBN: 0123814790 ISBN-13(EAN): 9780123814791
Издательство: Elsevier Science
Рейтинг:
Цена: 10645 р.
Наличие на складе: Нет в наличии.

Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9279 р.
Наличие на складе: Нет в наличии.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Matrix Methods in Data Mining and Pattern Recognition

Автор: Lars Eld?n
Название: Matrix Methods in Data Mining and Pattern Recognition
ISBN: 0898716268 ISBN-13(EAN): 9780898716269
Издательство: Cambridge Academ
Рейтинг:
Цена: 9781 р.
Наличие на складе: Поставка под заказ.

Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 9523 р.
Наличие на складе: Нет в наличии.

Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия