Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.
Автор: Ronald K. Pearson Название: Mining Imperfect Data ISBN: 0898715822 ISBN-13(EAN): 9780898715828 Издательство: Eurospan Рейтинг: Цена: 13514 р. Наличие на складе: Невозможна поставка.
Описание: This book thoroughly discusses the varying problems that occur in data mining, including their sources, consequences, detection, and treatment. Specific strategies for data pretreatment and analytical validation that are broadly applicable are described, making them useful in conjunction with most data mining analysis methods. Examples illustrate the performance of the pretreatment and validation methods in a variety of situations. The book, which deals with a wider range of data anomalies than are usually treated, includes a discussion of detecting anomalies through generalized sensitivity analysis (GSA), a process of identifying inconsistencies using systematic and extensive comparisons of results obtained by analysis of exchangeable datasets or subsets. Real data is made extensive use of, both in the form of a detailed analysis of a few real datasets and various published examples. A succinct introduction to functional equations illustrates their utility in describing various forms of qualitative behavior for useful data characterizations.
Автор: Berry Название: Lecture notes in data mining ISBN: 9812568026 ISBN-13(EAN): 9789812568021 Издательство: World Scientific Publishing Рейтинг: Цена: 16817 р. Наличие на складе: Невозможна поставка.
Описание: Contains lectures which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. This work lays a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees.
Автор: David Nettleton Название: Commercial Data Mining ISBN: 0124166024 ISBN-13(EAN): 9780124166028 Издательство: Elsevier Science Рейтинг: Цена: 6749 р. Наличие на складе: Нет в наличии.
Описание: Helps you learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. This book guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling.
Автор: Jiawei Han Название: Data Mining: Concepts and Techniques, ISBN: 0123814790 ISBN-13(EAN): 9780123814791 Издательство: Elsevier Science Рейтинг: Цена: 10645 р. Наличие на складе: Нет в наличии.
Описание: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining.
Автор: Ratner Bruce Название: Statistical and Machine-Learning Data Mining ISBN: 1439860912 ISBN-13(EAN): 9781439860915 Издательство: Taylor&Francis Рейтинг: Цена: 9279 р. Наличие на складе: Нет в наличии.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.
Автор: Lars Eld?n Название: Matrix Methods in Data Mining and Pattern Recognition ISBN: 0898716268 ISBN-13(EAN): 9780898716269 Издательство: Cambridge Academ Рейтинг: Цена: 9781 р. Наличие на складе: Поставка под заказ.
Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru