Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

An Introduction to Statistical Learning, James Gareth



Сейчас книги нет в продаже.
Возможно появится в будущем.

Автор: James Gareth
Название:  An Introduction to Statistical Learning
Перевод названия: Джеймс Гарет: Введение в изучение статистики
ISBN: 9781461471370
Издательство: Springer
Классификация:
ISBN-10: 1461471370
Обложка/Формат: Hardback
Страницы: 426
Вес: 0.852 кг.
Дата издания: 25.06.2013
Серия: Springer texts in statistics
Язык: English
Издание: 1st ed. 2013, corr.
Иллюстрации: 4 black & white illustrations, 146 colour illustrations, 10 black & white tables, biography
Размер: 241 x 163 x 25
Читательская аудитория: Professional & vocational
Подзаголовок: With applications in r
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering.


      Новое издание
Introduction to statistical learning

Автор: James, Gareth Witten, Daniela Hastie, Trevor Tibsh
Название: Introduction to statistical learning
ISBN: 1071614177 ISBN-13(EAN): 9781071614174
Издательство: Springer
Цена: 9182 р.
Наличие на складе: Есть у поставщикаПоставка под заказ.
Описание: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more.

Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers.

An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.



The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 11478 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Pattern Recognition and Machine Learning

Автор: Christopher M. Bishop
Название: Pattern Recognition and Machine Learning
ISBN: 0387310738 ISBN-13(EAN): 9780387310732
Издательство: Springer
Рейтинг:
Цена: 13009 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 9279 р.
Наличие на складе: Нет в наличии.

Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Introduction to Nonextensive Statistical Mechanics

Автор: Constantino Tsallis
Название: Introduction to Nonextensive Statistical Mechanics
ISBN: 0387853588 ISBN-13(EAN): 9780387853581
Издательство: Springer
Рейтинг:
Цена: 12873 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Metaphors, generalizations and unifications are natural and desirable ingredients of the evolution of scientific theories and concepts. This book focuses on nonextensive statistical mechanics, a generalization of Boltzmann-Gibbs (BG) statistical mechanics, one of the greatest monuments of contemporary physics.

Applied Linear Statistical Models with Student CD

Автор: Nachtsheim;Neter;Kutner
Название: Applied Linear Statistical Models with Student CD
ISBN: 0071122214 ISBN-13(EAN): 9780071122214
Издательство: McGraw-Hill
Рейтинг:
Цена: 10037 р.
Наличие на складе: Нет в наличии.

Описание: "Applied Linear Statistical Models", 5e, is the long established leading authoritative text and reference on statistical modeling. For students in most any discipline where statistical analysis or interpretation is used, ALSM serves as the standard work. The text includes brief introductory and review material, and then proceeds through regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in virtually any college. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.

An Introduction to Multivariate Statistical Analysis, Third Edition

Автор: T. W. Anderson
Название: An Introduction to Multivariate Statistical Analysis, Third Edition
ISBN: 0471360910 ISBN-13(EAN): 9780471360919
Издательство: Wiley
Рейтинг:
Цена: 30021 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Uses the method of maximum likelihood to a large extent to ensure reasonable, and in some cases optimal procedures. This work treats the basic and important topics in multivariate statistics.

Introduction to Time Series Using Stata

Автор: Becketti
Название: Introduction to Time Series Using Stata
ISBN: 1597181323 ISBN-13(EAN): 9781597181327
Издательство: Taylor&Francis
Рейтинг:
Цена: 11639 р.
Наличие на складе: Невозможна поставка.

Описание: Recent decades have witnessed explosive growth in new and powerful tools for timeseries analysis. These innovations have overturned older approaches to forecasting, macroeconomic policy analysis, the study of productivity and long-run economic growth, and the trading of financial assets. Familiarity with these new tools on time series is an essential skill for statisticians, econometricians, and applied researchers. Introduction to Time Series Using Stata provides a step-by-step guide to essential timeseries techniques—from the incredibly simple to the quite complex—and, at the same time, demonstrates how these techniques can be applied in the Stata statistical package. The emphasis is on an understanding of the intuition underlying theoretical innovations and an ability to apply them. Real-world examples illustrate the application of each concept as it is introduced, and care is taken to highlight the pitfalls, as well as the power, of each new tool. Sean Becketti is a financial industry veteran with three decades of experience in academics, government, and private industry. Over the last two decades, Becketti has led proprietary research teams at several leading financial firms, responsible for the models underlying the valuation, hedging, and relative value analysis of some of the largest fixed-income portfolios in the world.

Introduction to Probability with Mathematica, Second Edition

Автор: Hastings
Название: Introduction to Probability with Mathematica, Second Edition
ISBN: 1420079387 ISBN-13(EAN): 9781420079388
Издательство: Taylor&Francis
Рейтинг:
Цена: 27528 р.
Наличие на складе: Невозможна поставка.

Описание: Updated to conform to Mathematica (R) 7.0, this second edition shows how to easily create simulations from templates and solve problems using Mathematica. Along with new sections on order statistics, transformations of multivariate normal random variables, and Brownian motion, this edition offers an expanded section on

Introduction to High-Dimensional Statistics

Автор: Giraud
Название: Introduction to High-Dimensional Statistics
ISBN: 1482237946 ISBN-13(EAN): 9781482237948
Издательство: Taylor&Francis
Рейтинг:
Цена: 9908 р.
Наличие на складе: Нет в наличии.

Описание: Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise. Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text: Describes the challenges related to the analysis of high-dimensional data Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite Illustrates concepts with simple but clear practical examples Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.

Introduction to Machine Learning with Applications in Information Security

Автор: Stamp
Название: Introduction to Machine Learning with Applications in Information Security
ISBN: 1138626783 ISBN-13(EAN): 9781138626782
Издательство: Taylor&Francis
Рейтинг:
Цена: 8965 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This class-tested textbook will provide in-depth coverage of the fundamentals of machine learning, with an exploration of applications in information security. The book will cover malware detection, cryptography, and intrusion detection. The book will be relevant for students in machine learning and computer security courses.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия