Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Introduction to statistical learning, James, Gareth Witten, Daniela Hastie, Trevor Tibsh



Варианты приобретения
Цена: 9182р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 4 апр 2025
Ориентировочная дата поставки: Июнь

Добавить в корзину
в Мои желания

Автор: James, Gareth Witten, Daniela Hastie, Trevor Tibsh   (Гарет Джеймс)
Название:  Introduction to statistical learning
Перевод названия: Гарет Джеймс: Введение в статистическое обучение
ISBN: 9781071614174
Издательство: Springer
Классификация:
ISBN-10: 1071614177
Обложка/Формат: Hardcover
Страницы: 607
Вес: 1.196 кг.
Дата издания: 30.07.2021
Серия: Springer texts in statistics
Язык: English
Издание: 2nd ed. 2021
Иллюстрации: 182 illustrations, color; 9 illustrations, black and white; xv, 607 p. 191 illus., 182 illus. in color.
Размер: 23.88 x 20.32 x 3.30 cm
Читательская аудитория: Professional & vocational
Подзаголовок: With applications in r
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more.

Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers.

An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.




      Старое издание
An Introduction to Statistical Learning

Автор: James Gareth
Название: An Introduction to Statistical Learning
ISBN: 1461471370 ISBN-13(EAN): 9781461471370
Издательство: Springer
Цена: 9948 р.
Наличие на складе: Невозможна поставка.
Описание: This book presents key modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, and clustering.


The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 11478 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

An Introduction to the Bootstrap

Автор: Efron
Название: An Introduction to the Bootstrap
ISBN: 0412042312 ISBN-13(EAN): 9780412042317
Издательство: Taylor&Francis
Рейтинг:
Цена: 23595 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: An exploration of the many different bootstrap techniques. It discusses useful statistical techniques through real data examples and covers nonparametric regression, density estimation, classification trees, and least median squares regression. There are numerous exercises.

Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis

Автор: Silvia Bacci, Bruno Chiandotto
Название: Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis
ISBN: 1138083569 ISBN-13(EAN): 9781138083561
Издательство: Taylor&Francis
Рейтинг:
Цена: 18090 р.
Наличие на складе: Невозможна поставка.

Описание: This book provides the theoretical background to approach decision theory from a statistical perspective. It covers both traditional approaches, in terms of value theory and expected utility theory, and recent developments, in terms of causal inference.

Introduction to statistical methods, design of experiments and statistical quality control

Автор: Selvamuthu, Dharmaraja Das, Dipayan
Название: Introduction to statistical methods, design of experiments and statistical quality control
ISBN: 9811317356 ISBN-13(EAN): 9789811317354
Издательство: Springer
Рейтинг:
Цена: 10713 р.
Наличие на складе: Невозможна поставка.

Описание: This book provides an accessible presentation of concepts from probability theory, statistical methods, the design of experiments and statistical quality control. It is shaped by the experience of the two teachers teaching statistical methods and concepts to engineering students, over a decade. Practical examples and end-of-chapter exercises are the highlights of the text as they are purposely selected from different fields. Statistical principles discussed in the book have great relevance in several disciplines like economics, commerce, engineering, medicine, health-care, agriculture, biochemistry, and textiles to mention a few. A large number of students with varied disciplinary backgrounds need a course in basics of statistics, the design of experiments and statistical quality control at an introductory level to pursue their discipline of interest. No previous knowledge of probability or statistics is assumed, but an understanding of calculus is a prerequisite. The whole book serves as a master level introductory course in all the three topics, as required in textile engineering or industrial engineering. Organised into 10 chapters, the book discusses three different courses namely statistics, the design of experiments and quality control. Chapter 1 is the introductory chapter which describes the importance of statistical methods, the design of experiments and statistical quality control. Chapters 2–6 deal with statistical methods including basic concepts of probability theory, descriptive statistics, statistical inference, statistical test of hypothesis and analysis of correlation and regression. Chapters 7–9 deal with the design of experiments including factorial designs and response surface methodology, and Chap. 10 deals with statistical quality control.

Introduction to Malliavin Calculus

Автор: David Nualart, Eulalia Nualart
Название: Introduction to Malliavin Calculus
ISBN: 1107039126 ISBN-13(EAN): 9781107039124
Издательство: Cambridge Academ
Рейтинг:
Цена: 18876 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This textbook offers a compact introduction to Malliavin calculus. It covers recent applications, and includes a self-contained presentation of preliminary material on Brownian motion and stochastic calculus. Accessible to non-experts, graduate students and researchers can use this book to master the core techniques necessary for further study.

Introduction to Statistics and Data Analysis

Автор: Christian Heumann; Michael Schomaker; Shalabh
Название: Introduction to Statistics and Data Analysis
ISBN: 3319834568 ISBN-13(EAN): 9783319834566
Издательство: Springer
Рейтинг:
Цена: 12244 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Part I Descriptive Statistics: Introduction and Framework.- Frequency Measures and Graphical Representation of Data.- Measures of Central Tendency and Dispersion.- Association of Two Variables.- Part I Probability Calculus: Combinatorics.- Elements of Probability Theory.- Random Variables.- Probability Distributions.- Part III Inductive Statistics: Inference.- Hypothesis Testing.- Linear Regression.- Part IV Appendices: Introduction to R.- Solutions to Exercises.- Technical Appendix.- Visual Summaries.

Entropy and the Tao of Counting: A Brief Introduction to Statistical Mechanics and the Second Law of Thermodynamics

Автор: Sharp Kim
Название: Entropy and the Tao of Counting: A Brief Introduction to Statistical Mechanics and the Second Law of Thermodynamics
ISBN: 3030354598 ISBN-13(EAN): 9783030354596
Издательство: Springer
Рейтинг:
Цена: 7652 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a complete and accurate atomic level statistical mechanical explanation of entropy and the second law of thermodynamics.

Introduction to Statistical Machine Learning

Автор: Masashi Sugiyama
Название: Introduction to Statistical Machine Learning
ISBN: 0128021217 ISBN-13(EAN): 9780128021217
Издательство: Elsevier Science
Рейтинг:
Цена: 18612 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials.

Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks.

  • Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus
  • Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning
  • Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks
  • Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials
Introduction to Statistical Analysis of Laboratory Data

Автор: Alfred Bartolucci, Karan P. Singh, Sejong Bae
Название: Introduction to Statistical Analysis of Laboratory Data
ISBN: 1118736869 ISBN-13(EAN): 9781118736869
Издательство: Wiley
Рейтинг:
Цена: 17838 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction to Statistical Analysis of Laboratory Data presents a detailed discussion of important statistical concepts and methods of data presentation and analysis

  • Provides detailed discussions on statistical applications including a comprehensive package of statistical tools that are specific to the laboratory experiment process
  • Introduces terminology used in many applications such as the interpretation of assay design and validation as well as "fit for purpose" procedures including real world examples
  • Includes a rigorous review of statistical quality control procedures in laboratory methodologies and influences on capabilities
  • Presents methodologies used in the areas such as method comparison procedures, limit and bias detection, outlier analysis and detecting sources of variation
  • Analysis of robustness and ruggedness including multivariate influences on response are introduced to account for controllable/uncontrollable laboratory conditions
Introduction to the Theory of Statistical Inference

Автор: Liero
Название: Introduction to the Theory of Statistical Inference
ISBN: 113846032X ISBN-13(EAN): 9781138460324
Издательство: Taylor&Francis
Рейтинг:
Цена: 30674 р.
Наличие на складе: Невозможна поставка.

Описание: Based on the authors lecture notes, Introduction to the Theory of Statistical Inference presents concise yet complete coverage of statistical inference theory, focusing on the fundamental classical principles

Introduction to Probabilistic and Statistical Methods with Examples in R

Автор: Stapor Katarzyna
Название: Introduction to Probabilistic and Statistical Methods with Examples in R
ISBN: 3030457982 ISBN-13(EAN): 9783030457983
Издательство: Springer
Рейтинг:
Цена: 13009 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The content is divided into three basic parts: the first includes elements of probability theory, the second introduces readers to the basics of descriptive and inferential statistics (estimation, hypothesis testing), and the third presents the elements of correlation and linear regression analysis.

Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis

Автор: Bacci Silvia, Chiandotto Bruno
Название: Introduction to Statistical Decision Theory: Utility Theory and Causal Analysis
ISBN: 1032091754 ISBN-13(EAN): 9781032091754
Издательство: Taylor&Francis
Рейтинг:
Цена: 7706 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides the theoretical background to approach decision theory from a statistical perspective. It covers both traditional approaches, in terms of value theory and expected utility theory, and recent developments, in terms of causal inference.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия