Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Statistical and Inductive Inference by Minimum Message Length, C.S. Wallace



Варианты приобретения
Цена: 21661р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 30 сен 2024
Ориентировочная дата поставки: Ноябрь
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: C.S. Wallace
Название:  Statistical and Inductive Inference by Minimum Message Length
ISBN: 9781441920157
Издательство: Springer
Классификация:
ISBN-10: 1441920153
Обложка/Формат: Paperback
Страницы: 448
Вес: 0.624 кг.
Дата издания: 2005
Серия: Information Science and Statistics
Язык: English
Издание: 1st ed. softcover of
Иллюстрации: Black & white illustrations
Размер: 234 x 156 x 23
Читательская аудитория: Professional & vocational
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Mythanksareduetothemanypeoplewhohaveassistedintheworkreported here and in the preparation of this book. The work is incomplete and this account of it rougher than it might be. Such virtues as it has owe much to others; the faults are all mine. MyworkleadingtothisbookbeganwhenDavidBoultonandIattempted to develop a method for intrinsic classi?cation. Given data on a sample from some population, we aimed to discover whether the population should be considered to be a mixture of di?erent types, classes or species of thing, and, if so, how many classes were present, what each class looked like, and which things in the sample belonged to which class. I saw the problem as one of Bayesian inference, but with prior probability densities replaced by discrete probabilities re?ecting the precision to which the data would allow parameters to be estimated. Boulton, however, proposed that a classi?cation of the sample was a way of brie?y encoding the data: once each class was described and each thing assigned to a class, the data for a thing would be partially implied by the characteristics of its class, and hence require little further description. After some weeks arguing our cases, we decided on the maths for each approach, and soon discovered they gave essentially the same results. Without Boulton s insight, we may never have made the connection between inference and brief encoding, which is the heart of this work.



Methods for estimation and inference in modern econometrics

Автор: Anatolyev, Stanislav Gospodinov, Nikolay
Название: Methods for estimation and inference in modern econometrics
ISBN: 1439838240 ISBN-13(EAN): 9781439838242
Издательство: Taylor&Francis
Рейтинг:
Цена: 14083 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Methods for Estimation and Inference in Modern Econometrics provides a comprehensive introduction to a wide range of emerging topics, such as generalized empirical likelihood estimation and alternative asymptotics under drifting parameterizations, which have not been discussed in detail outside of highly technical research papers. The book also addresses several problems often arising in the analysis of economic data, including weak identification, model misspecification, and possible nonstationarity. The book's appendix provides a review of some basic concepts and results from linear algebra, probability theory, and statistics that are used throughout the book.





Topics covered include:







  • Well-established nonparametric and parametric approaches to estimation and conventional (asymptotic and bootstrap) frameworks for statistical inference


  • Estimation of models based on moment restrictions implied by economic theory, including various method-of-moments estimators for unconditional and conditional moment restriction models, and asymptotic theory for correctly specified and misspecified models


  • Non-conventional asymptotic tools that lead to improved finite sample inference, such as higher-order asymptotic analysis that allows for more accurate approximations via various asymptotic expansions, and asymptotic approximations based on drifting parameter sequences






Offering a unified approach to studying econometric problems, Methods for Estimation and Inference in Modern Econometrics links most of the existing estimation and inference methods in a general framework to help readers synthesize all aspects of modern econometric theory. Various theoretical exercises and suggested solutions are included to facilitate understanding.

Causal Inference for Statistics, Social, and Biomedical Sciences

Автор: Imbens
Название: Causal Inference for Statistics, Social, and Biomedical Sciences
ISBN: 0521885884 ISBN-13(EAN): 9780521885881
Издательство: Cambridge Academ
Рейтинг:
Цена: 7918 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Probability Theory and Statistical Inference

Название: Probability Theory and Statistical Inference
ISBN: 0521424089 ISBN-13(EAN): 9780521424080
Издательство: Cambridge Academ
Рейтинг:
Цена: 7285 р.
Наличие на складе: Поставка под заказ.

Описание: This major new textbook from a distinguished econometrician is intended for students taking introductory courses in probability theory and statistical inference. No prior knowledge other than a basic familiarity with descriptive statistics is assumed. The primary objective of this book is to establish the framework for the empirical modelling of observational (non-experimental) data. This framework known as 'Probabilistic Reduction' is formulated with a view to accommodating the peculiarities of observational (as opposed to experimental) data in a unifying and logically coherent way. Probability Theory and Statistical Inference differs from traditional textbooks in so far as it emphasizes concepts, ideas, notions and procedures which are appropriate for modelling observational data. Aimed at students at second-year undergraduate level and above studying econometrics and economics, this textbook will also be useful for students in other disciplines which make extensive use of observational data, including finance, biology, sociology and psychology and climatology.

Inductive Inference for Large Scale Text Classification

Автор: Catarina Silva; Bernadete Ribeiro
Название: Inductive Inference for Large Scale Text Classification
ISBN: 3642261345 ISBN-13(EAN): 9783642261343
Издательство: Springer
Рейтинг:
Цена: 16977 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains and illustrates key methods in inductive inference in large scale text classification, especially kernel approaches. It covers a series of new techniques to enhance, scale and distribute text classification tasks.

Inductive Inference for Large Scale Text Classification

Автор: Catarina Silva; Bernadete Ribeiro
Название: Inductive Inference for Large Scale Text Classification
ISBN: 3642045324 ISBN-13(EAN): 9783642045325
Издательство: Springer
Рейтинг:
Цена: 20896 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book explains and illustrates key methods in inductive inference in large scale text classification, especially kernel approaches. It covers a series of new techniques to enhance, scale and distribute text classification tasks.

Essential Statistical Inference

Автор: Boos
Название: Essential Statistical Inference
ISBN: 1461448174 ISBN-13(EAN): 9781461448174
Издательство: Springer
Рейтинг:
Цена: 15372 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A superb resource on statistical inference for researchers or students, this book has R code throughout, including in sample problems, and an appendix of derived notation and formulae. It covers core topics as well as modern aspects such as M-estimation.

Computer Age Statistical Inference

Автор: Bradley Efron and Trevor Hastie
Название: Computer Age Statistical Inference
ISBN: 1107149894 ISBN-13(EAN): 9781107149892
Издательство: Cambridge Academ
Рейтинг:
Цена: 8710 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия